IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51135-w.html
   My bibliography  Save this article

Cryo-EM structure of the CDK2-cyclin A-CDC25A complex

Author

Listed:
  • Rhianna J. Rowland

    (Framlington Place)

  • Svitlana Korolchuk

    (Framlington Place
    Stockton-on-Tees)

  • Marco Salamina

    (Framlington Place
    Milton)

  • Natalie J. Tatum

    (Framlington Place)

  • James R. Ault

    (University of Leeds)

  • Sam Hart

    (Heslington)

  • Johan P. Turkenburg

    (Heslington)

  • James N. Blaza

    (Heslington)

  • Martin E. M. Noble

    (Framlington Place)

  • Jane A. Endicott

    (Framlington Place)

Abstract

The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.

Suggested Citation

  • Rhianna J. Rowland & Svitlana Korolchuk & Marco Salamina & Natalie J. Tatum & James R. Ault & Sam Hart & Johan P. Turkenburg & James N. Blaza & Martin E. M. Noble & Jane A. Endicott, 2024. "Cryo-EM structure of the CDK2-cyclin A-CDC25A complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51135-w
    DOI: 10.1038/s41467-024-51135-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51135-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51135-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katerina Naydenova & Christopher J. Russo, 2017. "Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    2. Nicholas R. Brown & Svitlana Korolchuk & Mathew P. Martin & Will A. Stanley & Rouslan Moukhametzianov & Martin E. M. Noble & Jane A. Endicott, 2015. "CDK1 structures reveal conserved and unique features of the essential cell cycle CDK," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    3. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Erumbi S. Rangarajan & Julian L. Bois & Scott B. Hansen & Tina Izard, 2024. "High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Fred E. Fregoso & Malgorzata Boczkowska & Grzegorz Rebowski & Peter J. Carman & Trevor Eeuwen & Roberto Dominguez, 2023. "Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Simon Wiedemann & Reinhard Heckel, 2024. "A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Anjie Li & Tingting You & Xiaojie Pang & Yidi Wang & Lijin Tian & Xiaobo Li & Zhenfeng Liu, 2024. "Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Franziska L. Sendker & Tabea Schlotthauer & Christopher-Nils Mais & Yat Kei Lo & Mathias Girbig & Stefan Bohn & Thomas Heimerl & Daniel Schindler & Arielle Weinstein & Brian P. H. Metzger & Joseph W. , 2024. "Frequent transitions in self-assembly across the evolution of a central metabolic enzyme," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yaejin Yun & Hyeongseop Jeong & Thibaut Laboute & Kirill A. Martemyanov & Hyung Ho Lee, 2024. "Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Jianping Li & Yan Li & Akiko Koide & Huihui Kuang & Victor J. Torres & Shohei Koide & Da-Neng Wang & Nathaniel J. Traaseth, 2024. "Proton-coupled transport mechanism of the efflux pump NorA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Leishu Lin & Jiayuan Dong & Shun Xu & Jinman Xiao & Cong Yu & Fengfeng Niu & Zhiyi Wei, 2024. "Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Felix J. Metzner & Simon J. Wenzl & Michael Kugler & Stefan Krebs & Karl-Peter Hopfner & Katja Lammens, 2022. "Mechanistic understanding of human SLFN11," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51135-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.