IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38243-9.html
   My bibliography  Save this article

Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site

Author

Listed:
  • Kathryn H. Gunn

    (University of North Carolina)

  • Saskia B. Neher

    (University of North Carolina)

Abstract

Lipoprotein lipase (LPL) hydrolyzes triglycerides from circulating lipoproteins, releasing free fatty acids. Active LPL is needed to prevent hypertriglyceridemia, which is a risk factor for cardiovascular disease (CVD). Using cryogenic electron microscopy (cryoEM), we determined the structure of an active LPL dimer at 3.9 Å resolution. This structure reveals an open hydrophobic pore adjacent to the active site residues. Using modeling, we demonstrate that this pore can accommodate an acyl chain from a triglyceride. Known LPL mutations that lead to hypertriglyceridemia localize to the end of the pore and cause defective substrate hydrolysis. The pore may provide additional substrate specificity and/or allow unidirectional acyl chain release from LPL. This structure also revises previous models on how LPL dimerizes, revealing a C-terminal to C-terminal interface. We hypothesize that this active C-terminal to C-terminal conformation is adopted by LPL when associated with lipoproteins in capillaries.

Suggested Citation

  • Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38243-9
    DOI: 10.1038/s41467-023-38243-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38243-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38243-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adar Sonn-Segev & Katarina Belacic & Tatyana Bodrug & Gavin Young & Ryan T. VanderLinden & Brenda A. Schulman & Johannes Schimpf & Thorsten Friedrich & Phat Vinh Dip & Thomas U. Schwartz & Benedikt Ba, 2020. "Quantifying the heterogeneity of macromolecular machines by mass photometry," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Simon Wiedemann & Reinhard Heckel, 2024. "A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yaejin Yun & Hyeongseop Jeong & Thibaut Laboute & Kirill A. Martemyanov & Hyung Ho Lee, 2024. "Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Jianping Li & Yan Li & Akiko Koide & Huihui Kuang & Victor J. Torres & Shohei Koide & Da-Neng Wang & Nathaniel J. Traaseth, 2024. "Proton-coupled transport mechanism of the efflux pump NorA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Leishu Lin & Jiayuan Dong & Shun Xu & Jinman Xiao & Cong Yu & Fengfeng Niu & Zhiyi Wei, 2024. "Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Felix J. Metzner & Simon J. Wenzl & Michael Kugler & Stefan Krebs & Karl-Peter Hopfner & Katja Lammens, 2022. "Mechanistic understanding of human SLFN11," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Antonia Grauel & Jan Kägi & Tim Rasmussen & Iryna Makarchuk & Sabrina Oppermann & Aurélien F. A. Moumbock & Daniel Wohlwend & Rolf Müller & Frederic Melin & Stefan Günther & Petra Hellwig & Bettina Bö, 2021. "Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Fengfeng Niu & Lingxuan Li & Lei Wang & Jinman Xiao & Shun Xu & Yong Liu & Leishu Lin & Cong Yu & Zhiyi Wei, 2024. "Autoinhibition and activation of myosin VI revealed by its cryo-EM structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Lu Xue & Tiancai Chang & Zimu Li & Chenchen Wang & Heyu Zhao & Mei Li & Peng Tang & Xin Wen & Mengmeng Yu & Jiqin Wu & Xichen Bao & Xiaojun Wang & Peng Gong & Jun He & Xinwen Chen & Xiaoli Xiong, 2024. "Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Kotaro Kelley & Ashleigh M. Raczkowski & Oleg Klykov & Pattana Jaroenlak & Daija Bobe & Mykhailo Kopylov & Edward T. Eng & Gira Bhabha & Clinton S. Potter & Bridget Carragher & Alex J. Noble, 2022. "Waffle Method: A general and flexible approach for improving throughput in FIB-milling," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Luís António Menezes Carreira & Dobromir Szadkowski & Stefano Lometto & Georg. K. A. Hochberg & Lotte Søgaard-Andersen, 2023. "Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Xiuling Wu & Yanhe Zhao & Hong Zhang & Wendi Yang & Jinbo Yang & Lifang Sun & Meiqin Jiang & Qin Wang & Qianchao Wang & Xianren Ye & Xuewu Zhang & Yunkun Wu, 2023. "Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. John C. K. Wang & Hannah T. Baddock & Amirhossein Mafi & Ian T. Foe & Matthew Bratkowski & Ting-Yu Lin & Zena D. Jensvold & Magdalena Preciado López & David Stokoe & Dan Eaton & Qi Hao & Aaron H. Nile, 2024. "Structure of the p53 degradation complex from HPV16," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38243-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.