IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27596-8.html
   My bibliography  Save this article

A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI

Author

Listed:
  • Hongcheng Fan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bo Wang

    (Nankai University)

  • Yan Zhang

    (Chinese Academy of Sciences)

  • Yun Zhu

    (Chinese Academy of Sciences)

  • Bo Song

    (Nankai University)

  • Haijin Xu

    (Nankai University)

  • Yujia Zhai

    (Chinese Academy of Sciences)

  • Mingqiang Qiao

    (Nankai University
    Shanxi University)

  • Fei Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences
    Huairou National Comprehensive Science Center)

Abstract

Cryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.

Suggested Citation

  • Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27596-8
    DOI: 10.1038/s41467-021-27596-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27596-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27596-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takanori Nakane & Abhay Kotecha & Andrija Sente & Greg McMullan & Simonas Masiulis & Patricia M. G. E. Brown & Ioana T. Grigoras & Lina Malinauskaite & Tomas Malinauskas & Jonas Miehling & Tomasz Ucha, 2020. "Single-particle cryo-EM at atomic resolution," Nature, Nature, vol. 587(7832), pages 152-156, November.
    2. Katerina Naydenova & Christopher J. Russo, 2017. "Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    3. Ka Man Yip & Niels Fischer & Elham Paknia & Ashwin Chari & Holger Stark, 2020. "Atomic-resolution protein structure determination by cryo-EM," Nature, Nature, vol. 587(7832), pages 157-161, November.
    4. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Berk Küçükoğlu & Inayathulla Mohammed & Ricardo C. Guerrero-Ferreira & Stephanie M. Ribet & Georgios Varnavides & Max Leo Leidl & Kelvin Lau & Sergey Nazarov & Alexander Myasnikov & Massimo Kube & Jul, 2024. "Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Andrew Muenks & Samantha Zepeda & Guangfeng Zhou & David Veesler & Frank DiMaio, 2023. "Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Rebeccah A. Warmack & Ailiena O. Maggiolo & Andres Orta & Belinda B. Wenke & James B. Howard & Douglas C. Rees, 2023. "Structural consequences of turnover-induced homocitrate loss in nitrogenase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Victoria I. Cushing & Adrian F. Koh & Junjie Feng & Kaste Jurgaityte & Alexander Bondke & Sebastian H. B. Kroll & Marion Barbazanges & Bodo Scheiper & Ash K. Bahl & Anthony G. M. Barrett & Simak Ali &, 2024. "High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Rhianna J. Rowland & Svitlana Korolchuk & Marco Salamina & Natalie J. Tatum & James R. Ault & Sam Hart & Johan P. Turkenburg & James N. Blaza & Martin E. M. Noble & Jane A. Endicott, 2024. "Cryo-EM structure of the CDK2-cyclin A-CDC25A complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ninghai Gan & Weizhong Zeng & Yan Han & Qingfeng Chen & Youxing Jiang, 2024. "Structural mechanism of proton conduction in otopetrin proton channel," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Jiahua He & Tao Li & Sheng-You Huang, 2023. "Improvement of cryo-EM maps by simultaneous local and non-local deep learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Chao-Yu Yang & Chia-I Lien & Yi-Chun Tseng & Yi-Fan Tu & Arkadiusz W. Kulczyk & Yen-Chen Lu & Yin-Ting Wang & Tsung-Wei Su & Li-Chung Hsu & Yu-Chih Lo & Su-Chang Lin, 2024. "Deciphering DED assembly mechanisms in FADD-procaspase-8-cFLIP complexes regulating apoptosis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Fred E. Fregoso & Malgorzata Boczkowska & Grzegorz Rebowski & Peter J. Carman & Trevor Eeuwen & Roberto Dominguez, 2023. "Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Roman I. Koning & Hildo Vader & Martijn Nugteren & Peter A. Grocutt & Wen Yang & Ludovic L. R. Renault & Abraham J. Koster & Arnold C. F. Kamp & Michael Schwertner, 2022. "Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Simon Wiedemann & Reinhard Heckel, 2024. "A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27596-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.