IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50936-3.html
   My bibliography  Save this article

Increasing intensity of enterovirus outbreaks projected with climate change

Author

Listed:
  • Rachel E. Baker

    (Brown University
    Brown University)

  • Wenchang Yang

    (Princeton University)

  • Gabriel A. Vecchi

    (Princeton University
    Princeton University)

  • Saki Takahashi

    (Johns Hopkins Bloomberg School of Public Health)

Abstract

Pathogens of the enterovirus genus, including poliovirus and coxsackieviruses, typically circulate in the summer months suggesting a possible positive association between warmer weather and transmission. Here we evaluate the environmental and demographic drivers of enterovirus transmission, as well as the implications of climate change for future enterovirus circulation. We leverage pre-vaccination era data on polio in the US as well as data on two enterovirus A serotypes in China and Japan that are known to cause hand, foot, and mouth disease. Using mechanistic modeling and statistical approaches, we find that enterovirus transmission appears positively correlated with temperature although demographic factors, particularly the timing of school semesters, remain important. We use temperature projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate future outbreaks under late 21st-century climate change for Chinese provinces. We find that outbreak size increases with climate change on average, though results differ across climate models depending on the degree of wintertime warming. In the worst-case scenario, we project peak outbreaks in some locations could increase by up to 40%.

Suggested Citation

  • Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & Saki Takahashi, 2024. "Increasing intensity of enterovirus outbreaks projected with climate change," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50936-3
    DOI: 10.1038/s41467-024-50936-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50936-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50936-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachel E. Baker & Ayesha S. Mahmud & Caroline E. Wagner & Wenchang Yang & Virginia E. Pitzer & Cecile Viboud & Gabriel A. Vecchi & C. Jessica E. Metcalf & Bryan T. Grenfell, 2019. "Epidemic dynamics of respiratory syncytial virus in current and future climates," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    3. Rachel E. Baker & Ayesha S. Mahmud & C. Jessica E. Metcalf, 2018. "Dynamic response of airborne infections to climate change: predictions for varicella," Climatic Change, Springer, vol. 148(4), pages 547-560, June.
    4. Juan Yang & Qiaohong Liao & Kaiwei Luo & Fengfeng Liu & Yonghong Zhou & Gang Zou & Wei Huang & Shuanbao Yu & Xianglin Wei & Jiaxin Zhou & Bingbing Dai & Qi Qiu & Ralf Altmeyer & Hongan Hu & Juliette P, 2022. "Seroepidemiology of enterovirus A71 infection in prospective cohort studies of children in southern China, 2013-2018," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    6. Alexander D Becker & Bryan T Grenfell, 2017. "tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-10, September.
    7. Heidi J. Larson & Isaac Ghinai, 2011. "Lessons from polio eradication," Nature, Nature, vol. 473(7348), pages 446-447, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajkhowa, Pallavi & Chakrabarti, Suman, 2024. "Temperature and children’s dietary diversity: Evidence from India," Food Policy, Elsevier, vol. 128(C).
    2. Rachel E. Baker, 2020. "Climate change drives increase in modeled HIV prevalence," Climatic Change, Springer, vol. 163(1), pages 237-252, November.
    3. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    4. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    5. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    6. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    7. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Arteaga, Julián & de Roux, Nicolás & Gáfaro, Margarita & Ibáñez, Ana María & Pellegrina, Heitor, 2025. "Farm Size Distribution, Weather Shocks, and Agricultural Productivity," Documentos CEDE 21308, Universidad de los Andes, Facultad de Economía, CEDE.
    9. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    12. Austin L. Wright, 2016. "Economic Shocks and Rebel," HiCN Working Papers 232, Households in Conflict Network.
    13. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    14. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    15. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    16. Lane, Philip R., 2019. "Climate Change and the Irish Financial System," Economic Letters 1/EL/19, Central Bank of Ireland.
    17. Checo, Ariadne & Mejía, Mariam & Ramírez, Francisco A., 2017. "El rol de los regímenes de precipitaciones sobre la dinámica de precios y actividad del sector agropecuario de la República Dominicana durante el período 2000-2016 [The role of rainfall regimes on ," MPRA Paper 80301, University Library of Munich, Germany.
    18. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    19. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    20. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50936-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.