IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50936-3.html
   My bibliography  Save this article

Increasing intensity of enterovirus outbreaks projected with climate change

Author

Listed:
  • Rachel E. Baker

    (Brown University
    Brown University)

  • Wenchang Yang

    (Princeton University)

  • Gabriel A. Vecchi

    (Princeton University
    Princeton University)

  • Saki Takahashi

    (Johns Hopkins Bloomberg School of Public Health)

Abstract

Pathogens of the enterovirus genus, including poliovirus and coxsackieviruses, typically circulate in the summer months suggesting a possible positive association between warmer weather and transmission. Here we evaluate the environmental and demographic drivers of enterovirus transmission, as well as the implications of climate change for future enterovirus circulation. We leverage pre-vaccination era data on polio in the US as well as data on two enterovirus A serotypes in China and Japan that are known to cause hand, foot, and mouth disease. Using mechanistic modeling and statistical approaches, we find that enterovirus transmission appears positively correlated with temperature although demographic factors, particularly the timing of school semesters, remain important. We use temperature projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate future outbreaks under late 21st-century climate change for Chinese provinces. We find that outbreak size increases with climate change on average, though results differ across climate models depending on the degree of wintertime warming. In the worst-case scenario, we project peak outbreaks in some locations could increase by up to 40%.

Suggested Citation

  • Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & Saki Takahashi, 2024. "Increasing intensity of enterovirus outbreaks projected with climate change," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50936-3
    DOI: 10.1038/s41467-024-50936-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50936-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50936-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachel E. Baker & Ayesha S. Mahmud & Caroline E. Wagner & Wenchang Yang & Virginia E. Pitzer & Cecile Viboud & Gabriel A. Vecchi & C. Jessica E. Metcalf & Bryan T. Grenfell, 2019. "Epidemic dynamics of respiratory syncytial virus in current and future climates," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & Saki Takahashi, 2024. "Increasing intensity of enterovirus outbreaks projected with climate change," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Camilo Mora & Tristan McKenzie & Isabella M. Gaw & Jacqueline M. Dean & Hannah Hammerstein & Tabatha A. Knudson & Renee O. Setter & Charlotte Z. Smith & Kira M. Webster & Jonathan A. Patz & Erik C. Fr, 2022. "Over half of known human pathogenic diseases can be aggravated by climate change," Nature Climate Change, Nature, vol. 12(9), pages 869-875, September.
    5. Alexander D Becker & Bryan T Grenfell, 2017. "tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-10, September.
    6. Rachel E. Baker & Ayesha S. Mahmud & C. Jessica E. Metcalf, 2018. "Dynamic response of airborne infections to climate change: predictions for varicella," Climatic Change, Springer, vol. 148(4), pages 547-560, June.
    7. Heidi J. Larson & Isaac Ghinai, 2011. "Lessons from polio eradication," Nature, Nature, vol. 473(7348), pages 446-447, May.
    8. Juan Yang & Qiaohong Liao & Kaiwei Luo & Fengfeng Liu & Yonghong Zhou & Gang Zou & Wei Huang & Shuanbao Yu & Xianglin Wei & Jiaxin Zhou & Bingbing Dai & Qi Qiu & Ralf Altmeyer & Hongan Hu & Juliette P, 2022. "Seroepidemiology of enterovirus A71 infection in prospective cohort studies of children in southern China, 2013-2018," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & Saki Takahashi, 2024. "Increasing intensity of enterovirus outbreaks projected with climate change," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachel E. Baker, 2020. "Climate change drives increase in modeled HIV prevalence," Climatic Change, Springer, vol. 163(1), pages 237-252, November.
    2. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    3. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    4. Lé Mathias, 2022. "The adaptation of economies to climate change: lessons from the economic research [L’adaptation des économies au changement climatique : les enseignements tirés de la recherche économique]," Bulletin de la Banque de France, Banque de France, issue 239.
    5. Awaworyi Churchill, Sefa & Smyth, Russell & Trinh, Trong-Anh, 2022. "Energy poverty, temperature and climate change," Energy Economics, Elsevier, vol. 114(C).
    6. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    7. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    8. Wenju Cai & Yi Liu & Xiaopei Lin & Ziguang Li & Ying Zhang & David Newth, 2024. "Nonlinear country-heterogenous impact of the Indian Ocean Dipole on global economies," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Otto Brøns-Petersen & Søren Havn Gjedsted, 2021. "Climate change and institutional change: what is the relative importance for economic performance?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 333-360, April.
    11. Martin Henseler & Ingmar Schumacher, 2019. "The impact of weather on economic growth and its production factors," Climatic Change, Springer, vol. 154(3), pages 417-433, June.
    12. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    13. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    14. Hsing-Hsiang Huang & Michael R. Moore, 2018. "Farming under Weather Risk: Adaptation, Moral Hazard, and Selection on Moral Hazard," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 77-124, National Bureau of Economic Research, Inc.
    15. Austin L. Wright, 2016. "Economic Shocks and Rebel," HiCN Working Papers 232, Households in Conflict Network.
    16. Théo Benonnier & Katrin Millock & Vis Taraz, 2022. "Long-term migration trends and rising temperatures: the role of irrigation," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 11(3), pages 307-330, July.
    17. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    18. Despina Gavresi & Anastasia Litina & Christos A. Makridis, 2024. "Split personalities? Behavioral effects of temperature on financial decision‐making," Kyklos, Wiley Blackwell, vol. 77(3), pages 664-689, August.
    19. Ziebarth, N. R. & Schmitt, M. & Karlsson, M., 2013. "The short-term population health effects of weather and pollution: implications of climate change," Health, Econometrics and Data Group (HEDG) Working Papers 13/34, HEDG, c/o Department of Economics, University of York.
    20. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50936-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.