tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0185528
Download full text from publisher
References listed on IDEAS
- Matthew J. Ferrari & Rebecca F. Grais & Nita Bharti & Andrew J. K. Conlan & Ottar N. Bjørnstad & Lara J. Wolfson & Philippe J. Guerin & Ali Djibo & Bryan T. Grenfell, 2008. "The dynamics of measles in sub-Saharan Africa," Nature, Nature, vol. 451(7179), pages 679-684, February.
- B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rachel E. Baker & Wenchang Yang & Gabriel A. Vecchi & Saki Takahashi, 2024. "Increasing intensity of enterovirus outbreaks projected with climate change," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wan Yang & Liang Wen & Shen-Long Li & Kai Chen & Wen-Yi Zhang & Jeffrey Shaman, 2017. "Geospatial characteristics of measles transmission in China during 2005−2014," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-21, April.
- Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
- Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008.
"Model‐based measurement of latent risk in time series with applications,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277, January.
- Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2005. "Model-based Measurement of Latent Risk in Time Series with Applications," Tinbergen Institute Discussion Papers 05-118/4, Tinbergen Institute.
- Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held & the SUSPend modelling consortium, 2022. "Assessing the effect of school closures on the spread of COVID‐19 in Zurich," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 131-142, November.
- Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
- Metcalf, C.J.E. & Lessler, J. & Klepac, P. & Morice, A. & Grenfell, B.T. & Bjørnstad, O.N., 2012. "Structured models of infectious disease: Inference with discrete data," Theoretical Population Biology, Elsevier, vol. 82(4), pages 275-282.
- Jijun Zhao & Xinmin Li, 2016. "Determinants of the Transmission Variation of Hand, Foot and Mouth Disease in China," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
- H. J. Whitaker & C. P. Farrington, 2004. "Infections with Varying Contact Rates: Application to Varicella," Biometrics, The International Biometric Society, vol. 60(3), pages 615-623, September.
- Caroline Chuard & Hannes Schwandt & Alexander D. Becker & Masahiko Haraguchi, 2022.
"Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination,"
NBER Working Papers
30202, National Bureau of Economic Research, Inc.
- Chuard, Caroline & Schwandt, Hannes & Becker, Alex & Haraguchi, Masahiko, 2022. "Economic vs. Epidemiological Approaches to Measuring the Human Capital Impacts of Infectious Disease Elimination," IZA Discussion Papers 15420, Institute of Labor Economics (IZA).
- Delin Meng & Jun Xu & Jijun Zhao, 2021. "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
- David M Williams & Amy C Dechen Quinn & William F Porter, 2014. "Informing Disease Models with Temporal and Spatial Contact Structure among GPS-Collared Individuals in Wild Populations," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023.
"The spread of COVID-19 in London: Network effects and optimal lockdowns,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2020. "The spread of COVID-19 in London: network effects and optimal lockdowns," LSE Research Online Documents on Economics 118864, London School of Economics and Political Science, LSE Library.
- Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: network effects and optimal lockdowns," LSE Research Online Documents on Economics 118825, London School of Economics and Political Science, LSE Library.
- van de Water, Antoinette & Henley, Michelle & Bates, Lucy & Slotow, Rob, 2022. "The value of elephants: A pluralist approach," Ecosystem Services, Elsevier, vol. 58(C).
- Patrick W. Schmidt, 2020. "Inference under Superspreading: Determinants of SARS-CoV-2 Transmission in Germany," Papers 2011.04002, arXiv.org.
- Daniel M. Parker & James W. Wood & Shinsuke Tomita & Sharon DeWitte & Julia Jennings & Liwang Cui, 2014. "Household ecology and out-migration among ethnic Karen along the Thai-Myanmar border," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(39), pages 1129-1156.
- Victor Zakharov & Yulia Balykina & Igor Ilin & Andrea Tick, 2022. "Forecasting a New Type of Virus Spread: A Case Study of COVID-19 with Stochastic Parameters," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
- David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
- Mikael Jagan & Michelle S deJonge & Olga Krylova & David J D Earn, 2020. "Fast estimation of time-varying infectious disease transmission rates," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-39, September.
- Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
- Hao Yu & Xu Sun & Wei Deng Solvang & Xu Zhao, 2020. "Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)," IJERPH, MDPI, vol. 17(5), pages 1-25, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.