IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50811-1.html
   My bibliography  Save this article

Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages

Author

Listed:
  • Yashan Yang

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Qianqian Shao

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Mingcheng Guo

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Lin Han

    (Fudan University)

  • Xinyue Zhao

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Aohan Wang

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Xiangyun Li

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

  • Bo Wang

    (Shenzhen Campus of Sun Yat-sen University)

  • Ji-An Pan

    (Shenzhen Campus of Sun Yat-sen University)

  • Zhenguo Chen

    (Fudan University)

  • Andrei Fokine

    (Purdue University)

  • Lei Sun

    (Fudan University)

  • Qianglin Fang

    (School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University
    Shenzhen Campus of Sun Yat-sen University)

Abstract

Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid’s inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.

Suggested Citation

  • Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50811-1
    DOI: 10.1038/s41467-024-50811-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50811-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50811-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianglin Fang & Dongjie Zhu & Irina Agarkova & Jagat Adhikari & Thomas Klose & Yue Liu & Zhenguo Chen & Yingyuan Sun & Michael L. Gross & James L. Van Etten & Xinzheng Zhang & Michael G. Rossmann, 2019. "Near-atomic structure of a giant virus," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Ruochen Ouyang & Ana Rita Costa & C. Keith Cassidy & Aleksandra Otwinowska & Vera C. J. Williams & Agnieszka Latka & Phill J. Stansfeld & Zuzanna Drulis-Kawa & Yves Briers & Daniël M. Pelt & Stan J. J, 2022. "High-resolution reconstruction of a Jumbo-bacteriophage infecting capsulated bacteria using hyperbranched tail fibers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    4. Basem Al-Shayeb & Rohan Sachdeva & Lin-Xing Chen & Fred Ward & Patrick Munk & Audra Devoto & Cindy J. Castelle & Matthew R. Olm & Keith Bouma-Gregson & Yuki Amano & Christine He & Raphaël Méheust & Br, 2020. "Clades of huge phages from across Earth’s ecosystems," Nature, Nature, vol. 578(7795), pages 425-431, February.
    5. Athanasios Ignatiou & Sandrine Brasilès & Mehdi El Sadek Fadel & Jörg Bürger & Thorsten Mielke & Maya Topf & Paulo Tavares & Elena V. Orlova, 2019. "Structural transitions during the scaffolding-driven assembly of a viral capsid," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Dongjie Zhu & Xiangxi Wang & Qianglin Fang & James L Etten & Michael G Rossmann & Zihe Rao & Xinzheng Zhang, 2018. "Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Nicholas P. Stone & Gabriel Demo & Emily Agnello & Brian A. Kelch, 2019. "Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    8. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    9. Thomas G. Laughlin & Amar Deep & Amy M. Prichard & Christian Seitz & Yajie Gu & Eray Enustun & Sergey Suslov & Kanika Khanna & Erica A. Birkholz & Emily Armbruster & J. Andrew McCammon & Rommie E. Ama, 2022. "Architecture and self-assembly of the jumbo bacteriophage nuclear shell," Nature, Nature, vol. 608(7922), pages 429-435, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Qianqian Shao & Irina V. Agarkova & Eric A. Noel & David D. Dunigan & Yunshu Liu & Aohan Wang & Mingcheng Guo & Linlin Xie & Xinyue Zhao & Michael G. Rossmann & James L. Etten & Thomas Klose & Qiangli, 2022. "Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Duanfang Cao & Bingting Ma & Ziyi Cao & Xiaoyu Xu & Xinzheng Zhang & Ye Xiang, 2024. "The receptor VLDLR binds Eastern Equine Encephalitis virus through multiple distinct modes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Yi Yi & Shunzhang Liu & Yali Hao & Qingyang Sun & Xinjuan Lei & Yecheng Wang & Jiahua Wang & Mujie Zhang & Shan Tang & Qingxue Tang & Yue Zhang & Xipeng Liu & Yinzhao Wang & Xiang Xiao & Huahua Jian, 2023. "A systematic analysis of marine lysogens and proviruses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Rong-Cheng Yu & Feng Yang & Hong-Yan Zhang & Pu Hou & Kang Du & Jie Zhu & Ning Cui & Xudong Xu & Yuxing Chen & Qiong Li & Cong-Zhao Zhou, 2024. "Structure of the intact tail machine of Anabaena myophage A-1(L)," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    10. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50811-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.