IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics0378437121001138.html
   My bibliography  Save this article

Growth of tumours with stem cells: The effect of crowding and ageing of cells

Author

Listed:
  • Meacci, Luca
  • Primicerio, Mario
  • Buscaglia, Gustavo Carlos

Abstract

Mathematical models for the growth of tumours in the presence of stem cells (CSCs) and differentiated tumour cells (CCs) are presented and discussed. The CSCs are assumed to be immortal and multipotent, i.e. capable of generating several possible lineages of CCs that may undergo ageing and apoptosis. Each CC is characterised by two indexes, related to the differentiation lineage and the class of age, respectively. Furthermore, the effect of crowding is taken into account, assuming that mitosis can be hindered by the presence of cells in the vicinity of the would-be mother cell. Two families of models are proposed. First, models based on cellular automata are considered, whose evolution is governed by stochastic rules. Then, by averaging over the cells with the same pair of indexes, we obtain a deterministic model that consists of a system of Ordinary Differential Equations (ODEs) whose unknown functions are the fractions of the cells in each lineage and the class of age. The system presents a basic novelty with respect to the other compartmental models proposed in the literature as it cannot be solved hierarchically because of the presence of the crowding effect. Numerical simulations based on the two families of models give the same qualitative results and, in particular, they evidentiate the occurrence of the tumour paradox: an increased mortality of the CCs may induce a faster growth of the tumour. A final section of the paper is devoted to the case in which the age distribution of the CCs is continuous and not discrete. In this case, an interesting mathematical problem is obtained that consists of one ODE for the fraction of CSCs and m first-order Partial Differential Equations (PDEs); one for each lineage of CCs.

Suggested Citation

  • Meacci, Luca & Primicerio, Mario & Buscaglia, Gustavo Carlos, 2021. "Growth of tumours with stem cells: The effect of crowding and ageing of cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121001138
    DOI: 10.1016/j.physa.2021.125841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121001138
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tannishtha Reya & Sean J. Morrison & Michael F. Clarke & Irving L. Weissman, 2001. "Stem cells, cancer, and cancer stem cells," Nature, Nature, vol. 414(6859), pages 105-111, November.
    2. Franziska Michor & Timothy P. Hughes & Yoh Iwasa & Susan Branford & Neil P. Shah & Charles L. Sawyers & Martin A. Nowak, 2005. "Dynamics of chronic myeloid leukaemia," Nature, Nature, vol. 435(7046), pages 1267-1270, June.
    3. Brian J. P. Huntly & D. Gary Gilliland, 2005. "Summing up cancer stem cells," Nature, Nature, vol. 435(7046), pages 1169-1170, June.
    4. Benítez, L. & Barberis, L. & Condat, C.A., 2019. "Modeling tumorspheres reveals cancer stem cell niche building and plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrick, Enrique C. & Protachevicz, Paulo R. & Batista, Antonio M. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Szezech, José D. & Mugnaine, Michele & Caldas, Iberê L., 2022. "Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Tavasoli & Parviz Abdolmaleki & Seyed Javad Mowla & Faezeh Ghanati & Amir Sabet Sarvestani, 2009. "Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat," Environment Systems and Decisions, Springer, vol. 29(2), pages 220-224, June.
    2. Siegmund Kimberly D. & Marjoram Paul & Shibata Darryl, 2008. "Modeling DNA Methylation in a Population of Cancer Cells," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-23, June.
    3. Christopher Graser, 2020. "Preventative Cancer Treatments Through Optimizing Tissue Structure," Tinbergen Institute Discussion Papers 20-012/II, Tinbergen Institute.
    4. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    5. Evgenii Khailov & Ellina Grigorieva, 2023. "Optimal Melanoma Treatment Protocols for a Bilinear Control Model," Mathematics, MDPI, vol. 11(15), pages 1-29, July.
    6. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    7. Qing Chen & Xin Zhang & Wei-Min Li & Yu-Qiang Ji & Hao-Zhe Cao & Pengsheng Zheng, 2014. "Prognostic Value of LGR5 in Colorectal Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    8. Rădulescu, I.R. & Cândea, D. & Halanay, A., 2016. "Optimal control analysis of a leukemia model under imatinib treatment," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 1-11.
    9. Tin-Lok Wong & Jia-Jian Loh & Shixun Lu & Helen H. N. Yan & Hoi Cheong Siu & Ren Xi & Dessy Chan & Max J. F. Kam & Lei Zhou & Man Tong & John A. Copland & Leilei Chen & Jing-Ping Yun & Suet Yi Leung &, 2023. "ADAR1-mediated RNA editing of SCD1 drives drug resistance and self-renewal in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Lorand Gabriel Parajdi & Radu Precup & Eduard Alexandru Bonci & Ciprian Tomuleasa, 2020. "A Mathematical Model of the Transition from Normal Hematopoiesis to the Chronic and Accelerated-Acute Stages in Myeloid Leukemia," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    11. Jing Gao & Xingyu Jiang & Shumin Lei & Wenhao Cheng & Yi Lai & Min Li & Lei Yang & Peifeng Liu & Xiao-hua Chen & Min Huang & Haijun Yu & Huixiong Xu & Zhiai Xu, 2024. "A region-confined PROTAC nanoplatform for spatiotemporally tunable protein degradation and enhanced cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Junho Lee & Jin Su Kim & Yangjin Kim, 2021. "Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-28, October.
    13. Zhu, Guang & Lin, Zhenhua, 2021. "Commentary on statistical mechanical models of cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    14. Deeptha Ishwar & Rupa Haldavnekar & Krishnan Venkatakrishnan & Bo Tan, 2022. "Minimally invasive detection of cancer using metabolic changes in tumor-associated natural killer cells with Oncoimmune probes," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Callisthenis Yiannis & Massimo Mascolo & Michele Davide Mignogna & Silvia Varricchio & Valentina Natella & Gaetano De Rosa & Roberto Lo Giudice & Cosimo Galletti & Rita Paolini & Antonio Celentano, 2021. "Expression Profile of Stemness Markers CD138, Nestin and Alpha-SMA in Ameloblastic Tumours," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    16. Shuyan Liu & Chengfei Liu & Xiaoyun Min & Yuanyuan Ji & Na Wang & Dan Liu & Jiangyi Cai & Ke Li, 2013. "Prognostic Value of Cancer Stem Cell Marker Aldehyde Dehydrogenase in Ovarian Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    17. Nikolay Bessonov & Guillaume Pinna & Andrey Minarsky & Annick Harel-Bellan & Nadya Morozova, 2019. "Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
    18. Peter Kovacic & Ratnasamy Somanathan, 2017. "Unifying Mechanism for Nutrients as Anticancer Agents: Electron Transfer, Reactive Oxygen Species and Oxidative Stress," Global Journal of Health Science, Canadian Center of Science and Education, vol. 9(8), pages 1-66, August.
    19. Gabriel Morgado & Annie Lemarchand & Carlo Bianca, 2023. "From Cell–Cell Interaction to Stochastic and Deterministic Descriptions of a Cancer–Immune System Competition Model," Mathematics, MDPI, vol. 11(9), pages 1-25, May.
    20. Isabelle Bartram & Jonathan M Jeschke, 2019. "Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121001138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.