IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50697-z.html
   My bibliography  Save this article

A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders

Author

Listed:
  • Shengqi Wang

    (Tsinghua University)

  • Wenjie Li

    (Tsinghua University)

  • Junying Xue

    (Tsinghua University)

  • Jifeng Ge

    (Tsinghua University)

  • Jing He

    (Tsinghua University)

  • Junyang Hou

    (Tsinghua University)

  • Yu Xie

    (Tsinghua University)

  • Yuan Li

    (Tsinghua University)

  • Hao Zhang

    (Tsinghua University)

  • Zdeněk Sofer

    (University of Chemistry and Technology Prague)

  • Zhaoyang Lin

    (Tsinghua University)

Abstract

Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.

Suggested Citation

  • Shengqi Wang & Wenjie Li & Junying Xue & Jifeng Ge & Jing He & Junyang Hou & Yu Xie & Yuan Li & Hao Zhang & Zdeněk Sofer & Zhaoyang Lin, 2024. "A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50697-z
    DOI: 10.1038/s41467-024-50697-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50697-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50697-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhaoyang Lin & Yuan Liu & Udayabagya Halim & Mengning Ding & Yuanyue Liu & Yiliu Wang & Chuancheng Jia & Peng Chen & Xidong Duan & Chen Wang & Frank Song & Mufan Li & Chengzhang Wan & Yu Huang & Xiang, 2018. "Solution-processable 2D semiconductors for high-performance large-area electronics," Nature, Nature, vol. 562(7726), pages 254-258, October.
    2. Zhenyu Shi & Xiao Zhang & Xiaoqian Lin & Guigao Liu & Chongyi Ling & Shibo Xi & Bo Chen & Yiyao Ge & Chaoliang Tan & Zhuangchai Lai & Zhiqi Huang & Xinyang Ruan & Li Zhai & Lujiang Li & Zijian Li & Xi, 2023. "Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution," Nature, Nature, vol. 621(7978), pages 300-305, September.
    3. Baoshan Tang & Hasita Veluri & Yida Li & Zhi Gen Yu & Moaz Waqar & Jin Feng Leong & Maheswari Sivan & Evgeny Zamburg & Yong-Wei Zhang & John Wang & Aaron V-Y. Thean, 2022. "Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jian Zheng & Han Zhang & Shaohua Dong & Yanpeng Liu & Chang Tai Nai & Hyeon Suk Shin & Hu Young Jeong & Bo Liu & Kian Ping Loh, 2014. "High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao Liu & Huihui Zhu & Taoyu Zou & Youjin Reo & Gi-Seong Ryu & Yong-Young Noh, 2022. "Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Zhiqiang Zheng & Lu Qi & Xiaoyu Luan & Shuya Zhao & Yurui Xue & Yuliang Li, 2024. "Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Chengpeng Jiang & Jiaqi Liu & Yao Ni & Shangda Qu & Lu Liu & Yue Li & Lu Yang & Wentao Xu, 2023. "Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wei Li & Wen Duan & Guocheng Liao & Fanfan Gao & Yusen Wang & Rongxia Cui & Jincai Zhao & Chuanyi Wang, 2024. "0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Dehui Zhang & Dong Xu & Yuhang Li & Yi Luo & Jingtian Hu & Jingxuan Zhou & Yucheng Zhang & Boxuan Zhou & Peiqi Wang & Xurong Li & Bijie Bai & Huaying Ren & Laiyuan Wang & Ao Zhang & Mona Jarrahi & Yu , 2024. "Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Cian Gabbett & Adam G. Kelly & Emmet Coleman & Luke Doolan & Tian Carey & Kevin Synnatschke & Shixin Liu & Anthony Dawson & Domhnall O’Suilleabhain & Jose Munuera & Eoin Caffrey & John B. Boland & Zde, 2024. "Understanding how junction resistances impact the conduction mechanism in nano-networks," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Cian Gabbett & Luke Doolan & Kevin Synnatschke & Laura Gambini & Emmet Coleman & Adam G. Kelly & Shixin Liu & Eoin Caffrey & Jose Munuera & Catriona Murphy & Stefano Sanvito & Lewys Jones & Jonathan N, 2024. "Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Omnia Samy & Amine El Moutaouakil, 2021. "A Review on MoS 2 Energy Applications: Recent Developments and Challenges," Energies, MDPI, vol. 14(15), pages 1-20, July.
    10. Yue Yuan & Jonas Weber & Junzhu Li & Bo Tian & Yinchang Ma & Xixiang Zhang & Takashi Taniguchi & Kenji Watanabe & Mario Lanza, 2024. "On the quality of commercial chemical vapour deposited hexagonal boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Wenhui Wang & Ke Li & Jun Lan & Mei Shen & Zhongrui Wang & Xuewei Feng & Hongyu Yu & Kai Chen & Jiamin Li & Feichi Zhou & Longyang Lin & Panpan Zhang & Yida Li, 2023. "CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Hongzheng Dong & Xiangyu Pan & Yuancai Gong & Mengfan Xue & Pin Wang & SocMan Ho-Kimura & Yingfang Yao & Hao Xin & Wenjun Luo & Zhigang Zou, 2023. "Potential window alignment regulating ion transfer in faradaic junctions for efficient photoelectrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50697-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.