IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50378-x.html
   My bibliography  Save this article

Learning interpretable dynamics of stochastic complex systems from experimental data

Author

Listed:
  • Ting-Ting Gao

    (Tongji University
    Tongji University)

  • Baruch Barzel

    (Bar-Ilan University
    Bar-Ilan University)

  • Gang Yan

    (Tongji University
    Tongji University)

Abstract

Complex systems with many interacting nodes are inherently stochastic and best described by stochastic differential equations. Despite increasing observation data, inferring these equations from empirical data remains challenging. Here, we propose the Langevin graph network approach to learn the hidden stochastic differential equations of complex networked systems, outperforming five state-of-the-art methods. We apply our approach to two real systems: bird flock movement and tau pathology diffusion in brains. The inferred equation for bird flocks closely resembles the second-order Vicsek model, providing unprecedented evidence that the Vicsek model captures genuine flocking dynamics. Moreover, our approach uncovers the governing equation for the spread of abnormal tau proteins in mouse brains, enabling early prediction of tau occupation in each brain region and revealing distinct pathology dynamics in mutant mice. By learning interpretable stochastic dynamics of complex systems, our findings open new avenues for downstream applications such as control.

Suggested Citation

  • Ting-Ting Gao & Baruch Barzel & Gang Yan, 2024. "Learning interpretable dynamics of stochastic complex systems from experimental data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50378-x
    DOI: 10.1038/s41467-024-50378-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50378-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50378-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jose Casadiego & Mor Nitzan & Sarah Hallerberg & Marc Timme, 2017. "Model-free inference of direct network interactions from nonlinear collective dynamics," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Jacopo Grilli, 2020. "Macroecological laws describe variation and diversity in microbial communities," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Xin Li & Qunxi Zhu & Chengli Zhao & Xiaojun Duan & Bolin Zhao & Xue Zhang & Huanfei Ma & Jie Sun & Wei Lin, 2024. "Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Kevin Course & Prasanth B. Nair, 2023. "State estimation of a physical system with unknown governing equations," Nature, Nature, vol. 622(7982), pages 261-267, October.
    5. Jingxiang Shen & Feng Liu & Yuhai Tu & Chao Tang, 2021. "Finding gene network topologies for given biological function with recurrent neural network," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sysoeva, Marina V. & Sysoev, Ilya V. & Prokhorov, Mikhail D. & Ponomarenko, Vladimir I. & Bezruchko, Boris P., 2021. "Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Li, Zhongyang & Lu, Fei & Maggioni, Mauro & Tang, Sui & Zhang, Cheng, 2021. "On the identifiability of interaction functions in systems of interacting particles," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 135-163.
    5. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Dekaj, Ermanda & Gjini, Erida, 2024. "Pneumococcus and the stress-gradient hypothesis: A trade-off links R0 and susceptibility to co-colonization across countries," Theoretical Population Biology, Elsevier, vol. 156(C), pages 77-92.
    7. Chunheng Jiang & Zhenhan Huang & Tejaswini Pedapati & Pin-Yu Chen & Yizhou Sun & Jianxi Gao, 2024. "Network properties determine neural network performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Guy Amit & Amir Bashan, 2023. "Top-down identification of keystone taxa in the microbiome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Shen, Yuewen & Wen, Lihong & Shen, Chaowen, 2024. "Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    12. Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Atte Aalto & Lauri Viitasaari & Pauliina Ilmonen & Laurent Mombaerts & Jorge Gonçalves, 2020. "Gene regulatory network inference from sparsely sampled noisy data," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    14. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    15. Yuya Note & Masahito Watanabe & Hiroaki Yoshimura & Takaharu Yaguchi & Toshiaki Omori, 2024. "Sparse Estimation for Hamiltonian Mechanics," Mathematics, MDPI, vol. 12(7), pages 1-14, March.
    16. Qin, Xing & Hu, Jianhua & Ma, Shuangge & Wu, Mengyun, 2024. "Estimation of multiple networks with common structures in heterogeneous subgroups," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50378-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.