IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v132y2021icp135-163.html
   My bibliography  Save this article

On the identifiability of interaction functions in systems of interacting particles

Author

Listed:
  • Li, Zhongyang
  • Lu, Fei
  • Maggioni, Mauro
  • Tang, Sui
  • Zhang, Cheng

Abstract

We address a fundamental issue in the nonparametric inference for systems of interacting particles: the identifiability of the interaction functions. We prove that the interaction functions are identifiable for a class of first-order stochastic systems, including linear systems with general initial laws and nonlinear systems with stationary distributions. We show that a coercivity condition is sufficient for identifiability and becomes necessary when the number of particles approaches infinity. The coercivity is equivalent to the strict positivity of related integral operators, which we prove by showing that their integral kernels are strictly positive definite by using Müntz type theorems.

Suggested Citation

  • Li, Zhongyang & Lu, Fei & Maggioni, Mauro & Tang, Sui & Zhang, Cheng, 2021. "On the identifiability of interaction functions in systems of interacting particles," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 135-163.
  • Handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:135-163
    DOI: 10.1016/j.spa.2020.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anatoli V. Skorokhod, 1996. "On the regularity of many-particle dynamical systems perturbed by white noise," International Journal of Stochastic Analysis, Hindawi, vol. 9, pages 1-11, January.
    2. Jose Casadiego & Mor Nitzan & Sarah Hallerberg & Marc Timme, 2017. "Model-free inference of direct network interactions from nonlinear collective dynamics," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Della Maestra, Laetitia & Hoffmann, Marc, 2023. "The LAN property for McKean–Vlasov models in a mean-field regime," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 109-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sysoeva, Marina V. & Sysoev, Ilya V. & Prokhorov, Mikhail D. & Ponomarenko, Vladimir I. & Bezruchko, Boris P., 2021. "Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Chunheng Jiang & Zhenhan Huang & Tejaswini Pedapati & Pin-Yu Chen & Yizhou Sun & Jianxi Gao, 2024. "Network properties determine neural network performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Atte Aalto & Lauri Viitasaari & Pauliina Ilmonen & Laurent Mombaerts & Jorge Gonçalves, 2020. "Gene regulatory network inference from sparsely sampled noisy data," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Ting-Ting Gao & Baruch Barzel & Gang Yan, 2024. "Learning interpretable dynamics of stochastic complex systems from experimental data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:132:y:2021:i:c:p:135-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.