IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v156y2024icp77-92.html
   My bibliography  Save this article

Pneumococcus and the stress-gradient hypothesis: A trade-off links R0 and susceptibility to co-colonization across countries

Author

Listed:
  • Dekaj, Ermanda
  • Gjini, Erida

Abstract

Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization μ=1/(R0−1)k. From the mathematical model’s behavior, such conservation suggests preservation of ‘stability-diversity-complexity’ regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.

Suggested Citation

  • Dekaj, Ermanda & Gjini, Erida, 2024. "Pneumococcus and the stress-gradient hypothesis: A trade-off links R0 and susceptibility to co-colonization across countries," Theoretical Population Biology, Elsevier, vol. 156(C), pages 77-92.
  • Handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:77-92
    DOI: 10.1016/j.tpb.2024.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacopo Grilli, 2020. "Macroecological laws describe variation and diversity in microbial communities," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Ragan M. Callaway & R. W. Brooker & Philippe Choler & Zaal Kikvidze & Christopher J. Lortie & Richard Michalet & Leonardo Paolini & Francisco I. Pugnaire & Beth Newingham & Erik T. Aschehoug & Cristin, 2002. "Positive interactions among alpine plants increase with stress," Nature, Nature, vol. 417(6891), pages 844-848, June.
    3. Elina Numminen & Lu Cheng & Mats Gyllenberg & Jukka Corander, 2013. "Estimating the Transmission Dynamics of Streptococcus pneumoniae from Strain Prevalence Data," Biometrics, The International Biometric Society, vol. 69(3), pages 748-757, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joe J. Lim & Christian Diener & James Wilson & Jacob J. Valenzuela & Nitin S. Baliga & Sean M. Gibbons, 2023. "Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Michael A Treberg & Roy Turkington, 2014. "Species-Specific Responses to Community Density in an Unproductive Perennial Plant Community," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    3. Feng Zhang & Cang Hui, 2011. "Eco-Evolutionary Feedback and the Invasion of Cooperation in Prisoner's Dilemma Games," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    4. Xiao, Sa & Zhao, Liang & Zhang, Jia-Lin & Wang, Xiang-Tai & Chen, Shu-Yan, 2013. "The integration of facilitation into the neutral theory of community assembly," Ecological Modelling, Elsevier, vol. 251(C), pages 127-134.
    5. Jialing Huang & Yihang Li & Yu Shi & Lihong Wang & Qing Zhou & Xiaohua Huang, 2019. "Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    6. Guy Amit & Amir Bashan, 2023. "Top-down identification of keystone taxa in the microbiome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shuai Zhang & Tingting Liu & Wenwen Wei & Lei Shen & Xiuyuan Wang & Tayir Tuertia & Luhua Li & Wei Zhang, 2022. "In Arid Regions, Forage Mulching between Fruit Trees Rows Enhances Fruit Tree Light and Lowers Soil Salinity," Agriculture, MDPI, vol. 12(11), pages 1-14, November.
    10. Astrid Welk & Erik Welk & Helge Bruelheide, 2014. "Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    11. Marko Järvenpää & Mohamad R Abdul Sater & Georgia K Lagoudas & Paul C Blainey & Loren G Miller & James A McKinnell & Susan S Huang & Yonatan H Grad & Pekka Marttinen, 2019. "A Bayesian model of acquisition and clearance of bacterial colonization incorporating within-host variation," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    12. Wenxing Long & Runguo Zang & Yi Ding & Yunfeng Huang, 2013. "Effects of Competition and Facilitation on Species Assemblage in Two Types of Tropical Cloud Forest," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    13. Filotas, Elise & Grant, Martin & Parrott, Lael & Rikvold, Per Arne, 2010. "The effect of positive interactions on community structure in a multi-species metacommunity model along an environmental gradient," Ecological Modelling, Elsevier, vol. 221(6), pages 885-894.
    14. Amanda J Chunco & Todd Jobe & Karin S Pfennig, 2012. "Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-11, March.
    15. Ramiro Pablo López & Sergio Valdivia & Mónica L Rivera & Rodrigo S Rios, 2013. "Co-occurrence Patterns along a Regional Aridity Gradient of the Subtropical Andes Do Not Support Stress Gradient Hypotheses," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    16. Ting-Ting Gao & Baruch Barzel & Gang Yan, 2024. "Learning interpretable dynamics of stochastic complex systems from experimental data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Cheng Gao & Ling Xu & Liliam Montoya & Mary Madera & Joy Hollingsworth & Liang Chen & Elizabeth Purdom & Vasanth Singan & John Vogel & Robert B. Hutmacher & Jeffery A. Dahlberg & Devin Coleman-Derr & , 2022. "Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. David S Pescador & Francesco de Bello & Fernando Valladares & Adrián Escudero, 2015. "Plant Trait Variation along an Altitudinal Gradient in Mediterranean High Mountain Grasslands: Controlling the Species Turnover Effect," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-16, March.
    19. Yang, Xiqing & Zhang, Feng & Wang, Wanxiong, 2019. "Predation promotes cooperation in Prisoner’s dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 20-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:77-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.