IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50841-9.html
   My bibliography  Save this article

Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models

Author

Listed:
  • Kai Ma

    (Shandong University)

  • Yueyue Li

    (Shandong University)

  • Wen Song

    (Shandong University)

  • Jiayin Zhou

    (Shandong University)

  • Xia Liu

    (Shandong University)

  • Mengqi Wang

    (Shandong University)

  • Xiaofan Gong

    (Shandong University)

  • Linlin Wang

    (Shandong University)

  • Qichao Tu

    (Shandong University
    Shandong University)

Abstract

Microorganisms consume and transform dissolved organic matter (DOM) into various forms. However, it remains unclear whether the ecological patterns and drivers of DOM chemodiversity are analogous to those of microbial communities. Here, a large-scale investigation is conducted along the Chinese coasts to resolve the intrinsic linkages among the complex intertidal DOM pools, microbial communities and environmental heterogeneity. The abundance of DOM molecular formulae best fits log-normal distribution and follows Taylor’s Law. Distance-decay relationships are observed for labile molecular formulae, while latitudinal diversity gradients are noted for recalcitrant molecular formulae. Latitudinal patterns are also observed for DOM molecular features. Negative cohesion, bacterial diversity, and molecular traits are the main drivers of DOM chemodiversity. Stochasticity analyses demonstrate that determinism dominantly shapes the DOM compositional variations. This study unveils the intrinsic mechanisms underlying the intertidal DOM chemodiversity and microbial communities from ecological perspectives, deepening our understanding of microbially driven chemical ecology.

Suggested Citation

  • Kai Ma & Yueyue Li & Wen Song & Jiayin Zhou & Xia Liu & Mengqi Wang & Xiaofan Gong & Linlin Wang & Qichao Tu, 2024. "Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50841-9
    DOI: 10.1038/s41467-024-50841-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50841-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50841-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ang Hu & Mira Choi & Andrew J. Tanentzap & Jinfu Liu & Kyoung-Soon Jang & Jay T. Lennon & Yongqin Liu & Janne Soininen & Xiancai Lu & Yunlin Zhang & Ji Shen & Jianjun Wang, 2022. "Ecological networks of dissolved organic matter and microorganisms under global change," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Anne M. Kellerman & Thorsten Dittmar & Dolly N. Kothawala & Lars J. Tranvik, 2014. "Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    3. Min Lv & Xiaolin Luan & Chunyang Liao & Dongqi Wang & Dongyan Liu & Gan Zhang & Guibin Jiang & Lingxin Chen, 2020. "Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones," Nature Sustainability, Nature, vol. 3(10), pages 878-884, October.
    4. Anne E. Magurran & Peter A. Henderson, 2003. "Explaining the excess of rare species in natural species abundance distributions," Nature, Nature, vol. 422(6933), pages 714-716, April.
    5. Jacopo Grilli, 2020. "Macroecological laws describe variation and diversity in microbial communities," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Robert E. Danczak & Rosalie K. Chu & Sarah J. Fansler & Amy E. Goldman & Emily B. Graham & Malak M. Tfaily & Jason Toyoda & James C. Stegen, 2020. "Using metacommunity ecology to understand environmental metabolomes," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    7. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    8. Maren Zark & Thorsten Dittmar, 2018. "Universal molecular structures in natural dissolved organic matter," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Núria Catalán & Carina Rofner & Charles Verpoorter & María Teresa Pérez & Thorsten Dittmar & Lars Tranvik & Ruben Sommaruga & Hannes Peter, 2024. "Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jie Hu & Luyao Kang & Ziliang Li & Xuehui Feng & Caifan Liang & Zan Wu & Wei Zhou & Xuning Liu & Yuanhe Yang & Leiyi Chen, 2023. "Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Erika C. Freeman & Erik J. S. Emilson & Thorsten Dittmar & Lucas P. P. Braga & Caroline E. Emilson & Tobias Goldhammer & Christine Martineau & Gabriel Singer & Andrew J. Tanentzap, 2024. "Universal microbial reworking of dissolved organic matter along environmental gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Ang Hu & Mira Choi & Andrew J. Tanentzap & Jinfu Liu & Kyoung-Soon Jang & Jay T. Lennon & Yongqin Liu & Janne Soininen & Xiancai Lu & Yunlin Zhang & Ji Shen & Jianjun Wang, 2022. "Ecological networks of dissolved organic matter and microorganisms under global change," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Sonia Nawrocka & Hans De Witte & Margherita Pasini & Margherita Brondino, 2023. "A Person-Centered Approach to Job Insecurity: Is There a Reciprocal Relationship between the Quantitative and Qualitative Dimensions of Job Insecurity?," IJERPH, MDPI, vol. 20(7), pages 1-27, March.
    6. Md. Mominur Rahman & Bilkis Akhter, 2021. "The impact of investment in human capital on bank performance: evidence from Bangladesh," Future Business Journal, Springer, vol. 7(1), pages 1-13, December.
    7. Masashi Soga & Kevin J. Gaston & Yuichi Yamaura & Kiyo Kurisu & Keisuke Hanaki, 2016. "Both Direct and Vicarious Experiences of Nature Affect Children’s Willingness to Conserve Biodiversity," IJERPH, MDPI, vol. 13(6), pages 1-12, May.
    8. César Merino-Soto & Gina Chávez-Ventura & Verónica López-Fernández & Guillermo M. Chans & Filiberto Toledano-Toledano, 2022. "Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    9. Nathaniel Oliver Iotti & Damiano Menin & Tomas Jungert, 2022. "Early Adolescents’ Motivations to Defend Victims of Cyberbullying," IJERPH, MDPI, vol. 19(14), pages 1-9, July.
    10. AJ Golio, 2024. "Whose Neighborhood Now? Gentrification and Community Life in Low-Income Urban Neighborhoods," Working Papers 24-29, Center for Economic Studies, U.S. Census Bureau.
    11. Peter Tavel & Bibiana Jozefiakova & Peter Telicak & Jana Furstova & Michal Puza & Natalia Kascakova, 2022. "Psychometric Analysis of the Shortened Version of the Spiritual Well-Being Scale on the Slovak Population (SWBS-Sk)," IJERPH, MDPI, vol. 19(1), pages 1-12, January.
    12. Allen, Jaime & Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella & Ortúzar, Juan de Dios, 2019. "The role of critical incidents and involvement in transit satisfaction and loyalty," Transport Policy, Elsevier, vol. 75(C), pages 57-69.
    13. Christoph Dworschak, 2024. "Bias mitigation in empirical peace and conflict studies: A short primer on posttreatment variables," Journal of Peace Research, Peace Research Institute Oslo, vol. 61(3), pages 462-476, May.
    14. Andreea-Ionela Puiu & Anca Monica Ardeleanu & Camelia Cojocaru & Anca Bratu, 2021. "Exploring the Effect of Status Quo, Innovativeness, and Involvement Tendencies on Luxury Fashion Innovations: The Mediation Role of Status Consumption," Mathematics, MDPI, vol. 9(9), pages 1-18, May.
    15. Slupphaug, KJell & Mehmetoglu, Mehmet & Mittner, Matthias, 2024. "modsem: An R package for estimating latent interactions and quadratic effects," OSF Preprints h3rpw, Center for Open Science.
    16. Andres Trujillo-Barrera & Joost M. E. Pennings & Dianne Hofenk, 2016. "Understanding producers' motives for adopting sustainable practices: the role of expected rewards, risk perception and risk tolerance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(3), pages 359-382.
    17. Daria J. Kuss & Lydia Harkin & Eiman Kanjo & Joel Billieux, 2018. "Problematic Smartphone Use: Investigating Contemporary Experiences Using a Convergent Design," IJERPH, MDPI, vol. 15(1), pages 1-16, January.
    18. Allen, Jaime & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2019. "On evasion behaviour in public transport: Dissatisfaction or contagion?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 626-651.
    19. Cloarec, Julien, 2022. "Privacy controls as an information source to reduce data poisoning in artificial intelligence-powered personalization," Journal of Business Research, Elsevier, vol. 152(C), pages 144-153.
    20. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50841-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.