IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35593-8.html
   My bibliography  Save this article

Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling

Author

Listed:
  • Zachary C. Drake

    (Ohio State University)

  • Justin T. Seffernick

    (Ohio State University)

  • Steffen Lindert

    (Ohio State University)

Abstract

Covalent labeling (CL) in combination with mass spectrometry can be used as an analytical tool to study and determine structural properties of protein-protein complexes. However, data from these experiments is sparse and does not unambiguously elucidate protein structure. Thus, computational algorithms are needed to deduce structure from the CL data. In this work, we present a hybrid method that combines models of protein complex subunits generated with AlphaFold with differential CL data via a CL-guided protein-protein docking in Rosetta. In a benchmark set, the RMSD (root-mean-square deviation) of the best-scoring models was below 3.6 Å for 5/5 complexes with inclusion of CL data, whereas the same quality was only achieved for 1/5 complexes without CL data. This study suggests that our integrated approach can successfully use data obtained from CL experiments to distinguish between nativelike and non-nativelike models.

Suggested Citation

  • Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35593-8
    DOI: 10.1038/s41467-022-35593-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35593-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35593-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrej Sali & Robert Glaeser & Thomas Earnest & Wolfgang Baumeister, 2003. "From words to literature in structural proteomics," Nature, Nature, vol. 422(6928), pages 216-225, March.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Andrew W. Senior & Richard Evans & John Jumper & James Kirkpatrick & Laurent Sifre & Tim Green & Chongli Qin & Augustin Žídek & Alexander W. R. Nelson & Alex Bridgland & Hugo Penedones & Stig Petersen, 2020. "Improved protein structure prediction using potentials from deep learning," Nature, Nature, vol. 577(7792), pages 706-710, January.
    4. Ka Man Yip & Niels Fischer & Elham Paknia & Ashwin Chari & Holger Stark, 2020. "Atomic-resolution protein structure determination by cryo-EM," Nature, Nature, vol. 587(7832), pages 157-161, November.
    5. Sarah E. Biehn & Steffen Lindert, 2021. "Accurate protein structure prediction with hydroxyl radical protein footprinting data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    4. Qiufen Chen & Yuanzhao Guo & Jiuhong Jiang & Jing Qu & Li Zhang & Han Wang, 2023. "The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    5. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Aaron Gupta & Kevin S. Kao & Rachel Yamin & Deena A. Oren & Yehuda Goldgur & Jonathan Du & Pete Lollar & Eric J. Sundberg & Jeffrey V. Ravetch, 2023. "Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Sahar Foroutannejad & Lydia L. Good & Changfan Lin & Zachariah I. Carter & Mahlet G. Tadesse & Aaron L. Lucius & Brian R. Crane & Rodrigo A. Maillard, 2023. "The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Lei Wang & Jiangguo Zhang & Dali Wang & Chen Song, 2022. "Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-27, March.
    10. Jong Woo Bae & Sangtae Kim & V. Narry Kim & Jong-Seo Kim, 2021. "Photoactivatable ribonucleosides mark base-specific RNA-binding sites," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Nicolas Renaud & Cunliang Geng & Sonja Georgievska & Francesco Ambrosetti & Lars Ridder & Dario F. Marzella & Manon F. Réau & Alexandre M. J. J. Bonvin & Li C. Xue, 2021. "DeepRank: a deep learning framework for data mining 3D protein-protein interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    18. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35593-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.