IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50313-0.html
   My bibliography  Save this article

Controlled human hookworm infection remodels plasmacytoid dendritic cells and regulatory T cells towards profiles seen in natural infections in endemic areas

Author

Listed:
  • Mikhael D. Manurung

    (Leiden University Medical Center)

  • Friederike Sonnet

    (Leiden University Medical Center)

  • Marie-Astrid Hoogerwerf

    (Leiden University Medical Center)

  • Jacqueline J. Janse

    (Leiden University Medical Center)

  • Yvonne Kruize

    (Leiden University Medical Center)

  • Laura de Bes-Roeleveld

    (Leiden University Medical Center)

  • Marion König

    (Leiden University Medical Center)

  • Alex Loukas

    (James Cook University)

  • Benjamin G. Dewals

    (University of Liège)

  • Taniawati Supali

    (University of Indonesia)

  • Simon P. Jochems

    (Leiden University Medical Center)

  • Meta Roestenberg

    (Leiden University Medical Center)

  • Mariateresa Coppola

    (Leiden University Medical Center)

  • Maria Yazdanbakhsh

    (Leiden University Medical Center)

Abstract

Hookworm infection remains a significant public health concern, particularly in low- and middle-income countries, where mass drug administration has not stopped reinfection. Developing a vaccine is crucial to complement current control measures, which necessitates a thorough understanding of host immune responses. By leveraging controlled human infection models and high-dimensional immunophenotyping, here we investigated the immune remodeling following infection with 50 Necator americanus L3 hookworm larvae in four naïve volunteers over two years of follow-up and compared the profiles with naturally infected populations in endemic areas. Increased plasmacytoid dendritic cell frequency and diminished responsiveness to Toll-like receptor 7/8 ligand were observed in both controlled and natural infection settings. Despite the increased CD45RA+ regulatory T cell (Tregs) frequencies in both settings, markers of Tregs function, including inducible T-cell costimulatory (ICOS), tumor necrosis factor receptor 2 (TNFR2), and latency-associated peptide (LAP), as well as in vitro Tregs suppressive capacity were higher in natural infections. Taken together, this study provides unique insights into the immunological trajectories following a first-in-life hookworm infection compared to natural infections.

Suggested Citation

  • Mikhael D. Manurung & Friederike Sonnet & Marie-Astrid Hoogerwerf & Jacqueline J. Janse & Yvonne Kruize & Laura de Bes-Roeleveld & Marion König & Alex Loukas & Benjamin G. Dewals & Taniawati Supali & , 2024. "Controlled human hookworm infection remodels plasmacytoid dendritic cells and regulatory T cells towards profiles seen in natural infections in endemic areas," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50313-0
    DOI: 10.1038/s41467-024-50313-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50313-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50313-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    2. Andrew G. Levine & Alejandra Mendoza & Saskia Hemmers & Bruno Moltedo & Rachel E. Niec & Michail Schizas & Beatrice E. Hoyos & Ekaterina V. Putintseva & Ashutosh Chaudhry & Stanislav Dikiy & Sho Fujis, 2017. "Stability and function of regulatory T cells expressing the transcription factor T-bet," Nature, Nature, vol. 546(7658), pages 421-425, June.
    3. Dmitry Kobak & Philipp Berens, 2019. "The art of using t-SNE for single-cell transcriptomics," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Julian Braun & Lucie Loyal & Marco Frentsch & Daniel Wendisch & Philipp Georg & Florian Kurth & Stefan Hippenstiel & Manuela Dingeldey & Beate Kruse & Florent Fauchere & Emre Baysal & Maike Mangold & , 2020. "SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19," Nature, Nature, vol. 587(7833), pages 270-274, November.
    5. Christina Bligaard Pedersen & Søren Helweg Dam & Mike Bogetofte Barnkob & Michael D. Leipold & Noelia Purroy & Laura Z. Rassenti & Thomas J. Kipps & Jennifer Nguyen & James Arthur Lederer & Satyen Har, 2022. "cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Andrew G. Levine & Alejandra Mendoza & Saskia Hemmers & Bruno Moltedo & Rachel E. Niec & Michail Schizas & Beatrice E. Hoyos & Ekaterina V. Putintseva & Ashutosh Chaudhry & Stanislav Dikiy & Sho Fujis, 2017. "Correction: Corrigendum: Stability and function of regulatory T cells expressing the transcription factor T-bet," Nature, Nature, vol. 550(7674), pages 142-142, October.
    7. Tie-Wu Jia & Sara Melville & Jürg Utzinger & Charles H King & Xiao-Nong Zhou, 2012. "Soil-Transmitted Helminth Reinfection after Drug Treatment: A Systematic Review and Meta-Analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(5), pages 1-11, May.
    8. Vincent Unen & Thomas Höllt & Nicola Pezzotti & Na Li & Marcel J. T. Reinders & Elmar Eisemann & Frits Koning & Anna Vilanova & Boudewijn P. F. Lelieveldt, 2017. "Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leandro Barros & Daryna Piontkivska & Patrícia Figueiredo-Campos & Júlia Fanczal & Sofia Pereira Ribeiro & Marta Baptista & Silvia Ariotti & Nuno Santos & Maria João Amorim & Cristina Silva Pereira & , 2023. "CD8+ tissue-resident memory T-cell development depends on infection-matching regulatory T-cell types," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Lijun Cheng & Pratik Karkhanis & Birkan Gokbag & Yueze Liu & Lang Li, 2022. "DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-22, April.
    3. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    4. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    5. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    6. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    7. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    8. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    9. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    10. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    11. Juan Du & Junlei Zhang & Lin Wang & Xun Wang & Yaxing Zhao & Jiaoying Lu & Tingmin Fan & Meng Niu & Jie Zhang & Fei Cheng & Jun Li & Qi Zhu & Daoqiang Zhang & Hao Pei & Guang Li & Xingguang Liang & He, 2023. "Selective oxidative protection leads to tissue topological changes orchestrated by macrophage during ulcerative colitis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    13. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    14. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    15. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    16. Daniel Lewis & Davide Melcangi & Laura Pilossoph, 2019. "Latent Heterogeneity in the Marginal Propensity to Consume," 2019 Meeting Papers 519, Society for Economic Dynamics.
    17. David G. Priest & Takeshi Ebihara & Janyerkye Tulyeu & Jonas N. Søndergaard & Shuhei Sakakibara & Fuminori Sugihara & Shunichiro Nakao & Yuki Togami & Jumpei Yoshimura & Hiroshi Ito & Shinya Onishi & , 2024. "Atypical and non-classical CD45RBlo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    18. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    19. Rong Ma & Eric D. Sun & James Zou, 2023. "A spectral method for assessing and combining multiple data visualizations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50313-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.