IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13056-x.html
   My bibliography  Save this article

The art of using t-SNE for single-cell transcriptomics

Author

Listed:
  • Dmitry Kobak

    (University of Tübingen)

  • Philipp Berens

    (University of Tübingen
    University of Tübingen
    University of Tübingen
    University of Tübingen)

Abstract

Single-cell transcriptomics yields ever growing data sets containing RNA expression levels for thousands of genes from up to millions of cells. Common data analysis pipelines include a dimensionality reduction step for visualising the data in two dimensions, most frequently performed using t-distributed stochastic neighbour embedding (t-SNE). It excels at revealing local structure in high-dimensional data, but naive applications often suffer from severe shortcomings, e.g. the global structure of the data is not represented accurately. Here we describe how to circumvent such pitfalls, and develop a protocol for creating more faithful t-SNE visualisations. It includes PCA initialisation, a high learning rate, and multi-scale similarity kernels; for very large data sets, we additionally use exaggeration and downsampling-based initialisation. We use published single-cell RNA-seq data sets to demonstrate that this protocol yields superior results compared to the naive application of t-SNE.

Suggested Citation

  • Dmitry Kobak & Philipp Berens, 2019. "The art of using t-SNE for single-cell transcriptomics," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13056-x
    DOI: 10.1038/s41467-019-13056-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13056-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13056-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong Ma & Eric D. Sun & James Zou, 2023. "A spectral method for assessing and combining multiple data visualizations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xu Han & Ben Vermaercke & Vincent Bonin, 2022. "Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Kaiwen Wang & Yuqiu Yang & Fangjiang Wu & Bing Song & Xinlei Wang & Tao Wang, 2023. "Comparative analysis of dimension reduction methods for cytometry by time-of-flight data," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Jakob Woerner & Yidi Huang & Stephan Hutter & Carmelo Gurnari & Jesús María Hernández Sánchez & Janet Wang & Yimin Huang & Daniel Schnabel & Michael Aaby & Wanying Xu & Vedant Thorat & Dongxu Jiang & , 2022. "Circulating microbial content in myeloid malignancy patients is associated with disease subtypes and patient outcomes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Ziyan Huang & Myung Chung & Kentaro Tao & Akiyuki Watarai & Mu-Yun Wang & Hiroh Ito & Teruhiro Okuyama, 2023. "Ventromedial prefrontal neurons represent self-states shaped by vicarious fear in male mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Parashar Dhapola & Johan Rodhe & Rasmus Olofzon & Thomas Bonald & Eva Erlandsson & Shamit Soneji & Göran Karlsson, 2022. "Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. L. Mathur & B. Szalai & N. H. Du & R. Utharala & M. Ballinger & J. J. M. Landry & M. Ryckelynck & V. Benes & J. Saez-Rodriguez & C. A. Merten, 2022. "Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Lucy Xia & Christy Lee & Jingyi Jessica Li, 2024. "Statistical method scDEED for detecting dubious 2D single-cell embeddings and optimizing t-SNE and UMAP hyperparameters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Eva C. Freckmann & Emma Sandilands & Erin Cumming & Matthew Neilson & Alvaro Román-Fernández & Konstantina Nikolatou & Marisa Nacke & Tamsin R. M. Lannagan & Ann Hedley & David Strachan & Mark Salji &, 2022. "Traject3d allows label-free identification of distinct co-occurring phenotypes within 3D culture by live imaging," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    11. Lijun Cheng & Pratik Karkhanis & Birkan Gokbag & Yueze Liu & Lang Li, 2022. "DGCyTOF: Deep learning with graphic cluster visualization to predict cell types of single cell mass cytometry data," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-22, April.
    12. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13056-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.