IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v31y2016i4d10.1007_s00180-016-0652-8.html
   My bibliography  Save this article

PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection

Author

Listed:
  • Chun-Xia Zhang

    (Xi’an Jiaotong University)

  • Jiang-She Zhang

    (Xi’an Jiaotong University)

  • Sang-Woon Kim

    (Myongji University)

Abstract

Variable selection has consistently been a hot topic in linear regression models, especially when facing with high-dimensional data. Variable ranking, an advanced form of selection, is actually more fundamental since selection can be realized by thresholding once the variables are ranked suitably. In recent years, ensemble learning has gained a significant interest in the context of variable selection due to its great potential to improve selection accuracy and to reduce the risk of falsely including some unimportant variables. Motivated by the widespread success of boosting algorithms, a novel ensemble method PBoostGA is developed in this paper to implement variable ranking and selection in linear regression models. In PBoostGA, a weight distribution is maintained over the training set and genetic algorithm is adopted as its base learner. Initially, equal weight is assigned to each instance. According to the weight updating and ensemble member generating mechanism like AdaBoost.RT, a series of slightly different importance measures are sequentially produced for each variable. Finally, the candidate variables are ordered in the light of the average importance measure and some significant variables are then selected by a thresholding rule. Both simulation results and a real data illustration show the effectiveness of PBoostGA in comparison with some existing counterparts. In particular, PBoostGA has stronger ability to exclude redundant variables.

Suggested Citation

  • Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
  • Handle: RePEc:spr:compst:v:31:y:2016:i:4:d:10.1007_s00180-016-0652-8
    DOI: 10.1007/s00180-016-0652-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0652-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0652-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatterjee, Sangit & Laudato, Matthew & Lynch, Lucy A., 1996. "Genetic algorithms and their statistical applications: an introduction," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 633-651, October.
    2. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Rajen D. Shah & Richard J. Samworth, 2013. "Variable selection with error control: another look at stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 55-80, January.
    6. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    7. Xiaoyi Zhu & Yuhong Yang, 2015. "Variable selection after screening: with or without data splitting?," Computational Statistics, Springer, vol. 30(1), pages 191-203, March.
    8. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Chun-Xia Zhang & Guan-Wei Wang & Jun-Min Liu, 2015. "RandGA: injecting randomness into parallel genetic algorithm for variable selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 630-647, March.
    3. Xiaoyi Zhu & Yuhong Yang, 2015. "Variable selection after screening: with or without data splitting?," Computational Statistics, Springer, vol. 30(1), pages 191-203, March.
    4. Shi, Chengchun & Song, Rui & Lu, Wenbin & Li, Runzi, 2020. "Statistical inference for high-dimensional models via recursive online-score estimation," LSE Research Online Documents on Economics 103043, London School of Economics and Political Science, LSE Library.
    5. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    6. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    7. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    8. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    9. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    10. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    11. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    12. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    13. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    14. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    15. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    16. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    17. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    18. Li, Xinyi & Wang, Li & Nettleton, Dan, 2019. "Sparse model identification and learning for ultra-high-dimensional additive partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 204-228.
    19. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    20. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.

    More about this item

    Keywords

    Variable selection; Variable ranking; Genetic algorithm; Ensemble learning; Variable selection ensemble; Boosting;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:31:y:2016:i:4:d:10.1007_s00180-016-0652-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.