IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50311-2.html
   My bibliography  Save this article

Legionella maintains host cell ubiquitin homeostasis by effectors with unique catalytic mechanisms

Author

Listed:
  • Jiaqi Fu

    (The First Hospital of Jilin University)

  • Siying Li

    (The First Hospital of Jilin University)

  • Hongxin Guan

    (Fujian Normal University)

  • Chuang Li

    (Purdue University)

  • Yan-Bo Zhao

    (Fujian Normal University)

  • Tao-Tao Chen

    (Fujian Normal University)

  • Wei Xian

    (Peking University Health Science Center)

  • Zhengrui Zhang

    (Purdue University)

  • Yao Liu

    (Purdue University)

  • Qingtian Guan

    (The First Hospital of Jilin University)

  • Jingting Wang

    (Fujian Normal University)

  • Qiuhua Lu

    (Fujian Normal University)

  • Lina Kang

    (Fujian Normal University)

  • Si-Ru Zheng

    (Fujian Normal University)

  • Jinyu Li

    (Fuzhou University)

  • Shoujing Cao

    (Fuzhou University)

  • Chittaranjan Das

    (Purdue University)

  • Xiaoyun Liu

    (Peking University Health Science Center)

  • Lei Song

    (The First Hospital of Jilin University)

  • Songying Ouyang

    (Fujian Normal University)

  • Zhao-Qing Luo

    (Purdue University)

Abstract

The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.

Suggested Citation

  • Jiaqi Fu & Siying Li & Hongxin Guan & Chuang Li & Yan-Bo Zhao & Tao-Tao Chen & Wei Xian & Zhengrui Zhang & Yao Liu & Qingtian Guan & Jingting Wang & Qiuhua Lu & Lina Kang & Si-Ru Zheng & Jinyu Li & Sh, 2024. "Legionella maintains host cell ubiquitin homeostasis by effectors with unique catalytic mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50311-2
    DOI: 10.1038/s41467-024-50311-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50311-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50311-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Chester L. Drum & Shui-Zhong Yan & Joel Bard & Yue-Quan Shen & Dan Lu & Sandriyana Soelaiman & Zenon Grabarek & Andrew Bohm & Wei-Jen Tang, 2002. "Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin," Nature, Nature, vol. 415(6870), pages 396-402, January.
    3. Ninghai Gan & Xiangkai Zhen & Yao Liu & Xiaolong Xu & Chunlin He & Jiazhang Qiu & Yancheng Liu & Grant M. Fujimoto & Ernesto S. Nakayasu & Biao Zhou & Lan Zhao & Kedar Puvar & Chittaranjan Das & Songy, 2019. "Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase," Nature, Nature, vol. 572(7769), pages 387-391, August.
    4. Feng Feng & Fan Yang & Wei Rong & Xiaogang Wu & Jie Zhang & She Chen & Chaozu He & Jian-Min Zhou, 2012. "A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases," Nature, Nature, vol. 485(7396), pages 114-118, May.
    5. Yunhao Tan & Zhao-Qing Luo, 2011. "Legionella pneumophila SidD is a deAMPylase that modifies Rab1," Nature, Nature, vol. 475(7357), pages 506-509, July.
    6. Sagar Bhogaraju & Florian Bonn & Rukmini Mukherjee & Michael Adams & Moritz M. Pfleiderer & Wojciech P. Galej & Vigor Matkovic & Jaime Lopez-Mosqueda & Sissy Kalayil & Donghyuk Shin & Ivan Dikic, 2019. "Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation," Nature, Nature, vol. 572(7769), pages 382-386, August.
    7. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    8. Jiazhang Qiu & Michael J. Sheedlo & Kaiwen Yu & Yunhao Tan & Ernesto S. Nakayasu & Chittaranjan Das & Xiaoyun Liu & Zhao-Qing Luo, 2016. "Ubiquitination independent of E1 and E2 enzymes by bacterial effectors," Nature, Nature, vol. 533(7601), pages 120-124, May.
    9. Zilin Li & Wang Liu & Jiaqi Fu & Sen Cheng & Yue Xu & Zhiqiang Wang & Xiaofan Liu & Xuyan Shi & Yaxin Liu & Xiangbing Qi & Xiaoyun Liu & Jingjin Ding & Feng Shao, 2021. "Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11," Nature, Nature, vol. 599(7884), pages 290-295, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengrui Zhang & Jiaqi Fu & Johannes Gregor Matthias Rack & Chuang Li & Jim Voorneveld & Dmitri V. Filippov & Ivan Ahel & Zhao-Qing Luo & Chittaranjan Das, 2024. "Legionella metaeffector MavL reverses ubiquitin ADP-ribosylation via a conserved arginine-specific macrodomain," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Marietta S. Kaspers & Vivian Pogenberg & Christian Pett & Stefan Ernst & Felix Ecker & Philipp Ochtrop & Michael Groll & Christian Hedberg & Aymelt Itzen, 2023. "Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yizhi Yuan & Florian M. Stumpf & Lisa A. Schlor & Olivia P. Schmidt & Philip Saumer & Luisa B. Huber & Matthias Frese & Eva Höllmüller & Martin Scheffner & Florian Stengel & Kay Diederichs & Andreas M, 2023. "Chemoproteomic discovery of a human RNA ligase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Minhyeong Choi & Minwoo Jeong & Sangwoo Kang & Hayoung Jeon & Donghyuk Shin, 2024. "Legionella pneumophila evades host-autophagic clearance using phosphoribosyl-polyubiquitin chains," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    5. Michael Adams & Rahul Sharma & Thomas Colby & Felix Weis & Ivan Matic & Sagar Bhogaraju, 2021. "Structural basis for protein glutamylation by the Legionella pseudokinase SidJ," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Jinli Ge & Ying Wang & Xueyu Li & Qian Lu & Hangqian Yu & Hongtao Liu & Kelong Ma & Xuming Deng & Zhao-Qing Luo & Xiaoyun Liu & Jiazhang Qiu, 2024. "Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Kristin M. Kotewicz & Mengyun Zhang & Seongok Kim & Meghan S. Martin & Atish Roy Chowdhury & Albert Tai & Rebecca A. Scheck & Ralph R. Isberg, 2024. "Sde proteins coordinate ubiquitin utilization and phosphoribosylation to establish and maintain the Legionella replication vacuole," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    9. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50311-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.