IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v572y2019i7769d10.1038_s41586-019-1440-8.html
   My bibliography  Save this article

Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation

Author

Listed:
  • Sagar Bhogaraju

    (Goethe University
    Goethe University
    European Molecular Biology Laboratory)

  • Florian Bonn

    (Goethe University)

  • Rukmini Mukherjee

    (Goethe University
    Goethe University)

  • Michael Adams

    (European Molecular Biology Laboratory)

  • Moritz M. Pfleiderer

    (European Molecular Biology Laboratory)

  • Wojciech P. Galej

    (European Molecular Biology Laboratory)

  • Vigor Matkovic

    (Goethe University
    Goethe University)

  • Jaime Lopez-Mosqueda

    (Goethe University
    South Dakota State University)

  • Sissy Kalayil

    (Goethe University
    Goethe University)

  • Donghyuk Shin

    (Goethe University
    Goethe University
    Max Planck Institute of Biophysics)

  • Ivan Dikic

    (Goethe University
    Goethe University
    Max Planck Institute of Biophysics)

Abstract

The family of bacterial SidE enzymes catalyses phosphoribosyl-linked serine ubiquitination and promotes infectivity of Legionella pneumophila, a pathogenic bacteria that causes Legionnaires’ disease1–3. SidE enzymes share the genetic locus with the Legionella effector SidJ that spatiotemporally opposes the toxicity of these enzymes in yeast and mammalian cells, through a mechanism that is currently unknown4–6. Deletion of SidJ leads to a substantial defect in the growth of Legionella in both its natural hosts (amoebae) and in mouse macrophages4,5. Here we demonstrate that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA, thus blocking the ubiquitin ligase activity of SdeA. The glutamylation activity of SidJ requires interaction with the eukaryotic-specific co-factor calmodulin, and can be regulated by intracellular changes in Ca2+ concentrations. The cryo-electron microscopy structure of SidJ in complex with human apo-calmodulin revealed the architecture of this heterodimeric glutamylase. We show that, in cells infected with L. pneumophila, SidJ mediates the glutamylation of SidE enzymes on the surface of vacuoles that contain Legionella. We used quantitative proteomics to uncover multiple host proteins as putative targets of SidJ-mediated glutamylation. Our study reveals the mechanism by which SidE ligases are inhibited by a SidJ–calmodulin glutamylase, and opens avenues for exploring an understudied protein modification (glutamylation) in eukaryotes.

Suggested Citation

  • Sagar Bhogaraju & Florian Bonn & Rukmini Mukherjee & Michael Adams & Moritz M. Pfleiderer & Wojciech P. Galej & Vigor Matkovic & Jaime Lopez-Mosqueda & Sissy Kalayil & Donghyuk Shin & Ivan Dikic, 2019. "Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation," Nature, Nature, vol. 572(7769), pages 382-386, August.
  • Handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1440-8
    DOI: 10.1038/s41586-019-1440-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1440-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1440-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Adams & Rahul Sharma & Thomas Colby & Felix Weis & Ivan Matic & Sagar Bhogaraju, 2021. "Structural basis for protein glutamylation by the Legionella pseudokinase SidJ," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1440-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.