IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51272-2.html
   My bibliography  Save this article

Sde proteins coordinate ubiquitin utilization and phosphoribosylation to establish and maintain the Legionella replication vacuole

Author

Listed:
  • Kristin M. Kotewicz

    (Tufts University School of Medicine)

  • Mengyun Zhang

    (Tufts University School of Medicine
    Global Health Drug Discovery Institute)

  • Seongok Kim

    (Tufts University School of Medicine
    Sejong University)

  • Meghan S. Martin

    (Tufts University)

  • Atish Roy Chowdhury

    (Tufts University School of Medicine)

  • Albert Tai

    (Tufts University School of Medicine)

  • Rebecca A. Scheck

    (Tufts University)

  • Ralph R. Isberg

    (Tufts University School of Medicine)

Abstract

The Legionella pneumophila Sde family of translocated proteins promotes host tubular endoplasmic reticulum (ER) rearrangements that are tightly linked to phosphoribosyl-ubiquitin (pR-Ub) modification of Reticulon 4 (Rtn4). Sde proteins have two additional activities of unclear relevance to the infection process: K63 linkage-specific deubiquitination and phosphoribosyl modification of polyubiquitin (pR-Ub). We show here that the deubiquitination activity (DUB) stimulates ER rearrangements while pR-Ub protects the replication vacuole from cytosolic surveillance by autophagy. Loss of DUB activity is tightly linked to lowered pR-Ub modification of Rtn4, consistent with the DUB activity fueling the production of pR-Ub-Rtn4. In parallel, phosphoribosyl modification of polyUb, in a region of the protein known as the isoleucine patch, prevents binding by the autophagy adapter p62. An inability of Sde mutants to modify polyUb results in immediate p62 association, a critical precursor to autophagic attack. The ability of Sde WT to block p62 association decays quickly after bacterial infection, as predicted by the presence of previously characterized L. pneumophila effectors that inactivate Sde and remove polyUb. In sum, these results show that the accessory Sde activities act to stimulate ER rearrangements and protect from host innate immune sensing in a temporal fashion.

Suggested Citation

  • Kristin M. Kotewicz & Mengyun Zhang & Seongok Kim & Meghan S. Martin & Atish Roy Chowdhury & Albert Tai & Rebecca A. Scheck & Ralph R. Isberg, 2024. "Sde proteins coordinate ubiquitin utilization and phosphoribosylation to establish and maintain the Legionella replication vacuole," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51272-2
    DOI: 10.1038/s41467-024-51272-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51272-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51272-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sissy Kalayil & Sagar Bhogaraju & Florian Bonn & Donghyuk Shin & Yaobin Liu & Ninghai Gan & Jérôme Basquin & Paolo Grumati & Zhao-Qing Luo & Ivan Dikic, 2018. "Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination," Nature, Nature, vol. 557(7707), pages 734-738, May.
    2. Ninghai Gan & Xiangkai Zhen & Yao Liu & Xiaolong Xu & Chunlin He & Jiazhang Qiu & Yancheng Liu & Grant M. Fujimoto & Ernesto S. Nakayasu & Biao Zhou & Lan Zhao & Kedar Puvar & Chittaranjan Das & Songy, 2019. "Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase," Nature, Nature, vol. 572(7769), pages 387-391, August.
    3. Sagar Bhogaraju & Florian Bonn & Rukmini Mukherjee & Michael Adams & Moritz M. Pfleiderer & Wojciech P. Galej & Vigor Matkovic & Jaime Lopez-Mosqueda & Sissy Kalayil & Donghyuk Shin & Ivan Dikic, 2019. "Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation," Nature, Nature, vol. 572(7769), pages 382-386, August.
    4. Jiazhang Qiu & Michael J. Sheedlo & Kaiwen Yu & Yunhao Tan & Ernesto S. Nakayasu & Chittaranjan Das & Xiaoyun Liu & Zhao-Qing Luo, 2016. "Ubiquitination independent of E1 and E2 enzymes by bacterial effectors," Nature, Nature, vol. 533(7601), pages 120-124, May.
    5. Anil Akturk & David J. Wasilko & Xiaochun Wu & Yao Liu & Yong Zhang & Jiazhang Qiu & Zhao-Qing Luo & Katherine H. Reiter & Peter S. Brzovic & Rachel E. Klevit & Yuxin Mao, 2018. "Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector," Nature, Nature, vol. 557(7707), pages 729-733, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhyeong Choi & Minwoo Jeong & Sangwoo Kang & Hayoung Jeon & Donghyuk Shin, 2024. "Legionella pneumophila evades host-autophagic clearance using phosphoribosyl-polyubiquitin chains," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    2. Michael Adams & Rahul Sharma & Thomas Colby & Felix Weis & Ivan Matic & Sagar Bhogaraju, 2021. "Structural basis for protein glutamylation by the Legionella pseudokinase SidJ," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Zhengrui Zhang & Jiaqi Fu & Johannes Gregor Matthias Rack & Chuang Li & Jim Voorneveld & Dmitri V. Filippov & Ivan Ahel & Zhao-Qing Luo & Chittaranjan Das, 2024. "Legionella metaeffector MavL reverses ubiquitin ADP-ribosylation via a conserved arginine-specific macrodomain," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Min Wan & Marena E. Minelli & Qiuye Zhao & Shannon Marshall & Haiyuan Yu & Marcus Smolka & Yuxin Mao, 2024. "Phosphoribosyl modification of poly-ubiquitin chains at the Legionella-containing vacuole prohibiting autophagy adaptor recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Jiaqi Fu & Siying Li & Hongxin Guan & Chuang Li & Yan-Bo Zhao & Tao-Tao Chen & Wei Xian & Zhengrui Zhang & Yao Liu & Qingtian Guan & Jingting Wang & Qiuhua Lu & Lina Kang & Si-Ru Zheng & Jinyu Li & Sh, 2024. "Legionella maintains host cell ubiquitin homeostasis by effectors with unique catalytic mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Xiangkai Zhen & Yongyu Wu & Jinli Ge & Jiaqi Fu & Le Ye & Niannian Lin & Zhijie Huang & Zihe Liu & Zhao-qing Luo & Jiazhang Qiu & Songying Ouyang, 2022. "Molecular mechanism of toxin neutralization in the HipBST toxin-antitoxin system of Legionella pneumophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Yuen-Yan Chang & Camila Valenzuela & Arthur Lensen & Noelia Lopez-Montero & Saima Sidik & John Salogiannis & Jost Enninga & John Rohde, 2024. "Microtubules provide force to promote membrane uncoating in vacuolar escape for a cyto-invasive bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Dandan Wang & Lingfang Zhu & Xiangkai Zhen & Daoyan Yang & Changfu Li & Yating Chen & Huannan Wang & Yichen Qu & Xiaozhen Liu & Yanling Yin & Huawei Gu & Lei Xu & Chuanxing Wan & Yao Wang & Songying O, 2022. "A secreted effector with a dual role as a toxin and as a transcriptional factor," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Jinli Ge & Ying Wang & Xueyu Li & Qian Lu & Hangqian Yu & Hongtao Liu & Kelong Ma & Xuming Deng & Zhao-Qing Luo & Xiaoyun Liu & Jiazhang Qiu, 2024. "Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51272-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.