IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34852-y.html
   My bibliography  Save this article

Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene

Author

Listed:
  • Ting Zhang

    (Dalian University of Technology)

  • Zhe Sun

    (Dalian University of Technology)

  • Shiyan Li

    (Chinese Academy of Science)

  • Baojun Wang

    (Taiyuan University of Technology
    Taiyuan University of Technology)

  • Yuefeng Liu

    (Chinese Academy of Science)

  • Riguang Zhang

    (Taiyuan University of Technology
    Taiyuan University of Technology)

  • Zhongkui Zhao

    (Dalian University of Technology)

Abstract

Developing highly efficient catalyst for selective oxidation of benzene to phenol (SOBP) with low H2O2 consumption is highly desirable for practical application, but challenge remains. Herein, we report unique single-atom Cu1-N1O2 coordination-structure on N/C material (Cu-N1O2 SA/CN), prepared by water molecule-mediated pre-assembly-pyrolysis method, can efficiently boost SOBP reaction at a 2:1 of low H2O2/benzene molar ratio, showing 83.7% of high benzene conversion with 98.1% of phenol selectivity. The Cu1-N1O2 sites can provide a preponderant reaction pathway for SOBP reaction with less steps and lower energy barrier. As a result, it shows an unexpectedly higher turnover frequency (435 h−1) than that of Cu1-N2 (190 h−1), Cu1-N3 (90 h−1) and Cu nanoparticle (58 h−1) catalysts, respectively. This work provides a facile and efficient method for regulating the electron configuration of single-atom catalyst and generates a highly active and selective non-precious metal catalyst for industrial production of phenol through selective oxidation of benzene.

Suggested Citation

  • Ting Zhang & Zhe Sun & Shiyan Li & Baojun Wang & Yuefeng Liu & Riguang Zhang & Zhongkui Zhao, 2022. "Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34852-y
    DOI: 10.1038/s41467-022-34852-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34852-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34852-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haihong Bao & Yuan Qiu & Xianyun Peng & Jia-ao Wang & Yuying Mi & Shunzheng Zhao & Xijun Liu & Yifan Liu & Rui Cao & Longchao Zhuo & Junqiang Ren & Jiaqiang Sun & Jun Luo & Xuping Sun, 2021. "Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Youqi Zhu & Wenming Sun & Jun Luo & Wenxing Chen & Tai Cao & Lirong Zheng & Juncai Dong & Jian Zhang & Maolin Zhang & Yunhu Han & Chen Chen & Qing Peng & Dingsheng Wang & Yadong Li, 2018. "A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Yu Zhou & Zhipan Ma & Junjie Tang & Ning Yan & Yonghua Du & Shibo Xi & Kai Wang & Wei Zhang & Haimeng Wen & Jun Wang, 2018. "Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Qichen Wang & Qingguo Feng & Yongpeng Lei & Shuaihao Tang & Liang Xu & Yu Xiong & Guozhao Fang & Yuchao Wang & Peiyao Yang & Jingjing Liu & Wei Liu & Xiang Xiong, 2022. "Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jie Ding & Zhiming Wei & Fuhua Li & Jincheng Zhang & Qiao Zhang & Jing Zhou & Weijue Wang & Yuhang Liu & Zhen Zhang & Xiaozhi Su & Runze Yang & Wei Liu & Chenliang Su & Hong Bin Yang & Yanqiang Huang , 2023. "Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jijia Xie & Xiyi Li & Jian Guo & Lei Luo & Juan J. Delgado & Natalia Martsinovich & Junwang Tang, 2023. "Highly selective oxidation of benzene to phenol with air at room temperature promoted by water," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34852-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.