IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45747-5.html
   My bibliography  Save this article

Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO2 electromethanation

Author

Listed:
  • Jiawei Zhu

    (Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory)

  • Yu Zhang

    (Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory
    University of Chinese Academy of Sciences)

  • Zitao Chen

    (Chinese Academy of Sciences)

  • Zhenbao Zhang

    (Linyi University)

  • Xuezeng Tian

    (Chinese Academy of Sciences)

  • Minghua Huang

    (Ocean University of China)

  • Xuedong Bai

    (Chinese Academy of Sciences)

  • Xue Wang

    (City University of Hong Kong)

  • Yongfa Zhu

    (Tsinghua University)

  • Heqing Jiang

    (Chinese Academy of Sciences
    Shandong Energy Institute
    Qingdao New Energy Shandong Laboratory)

Abstract

Cu-oxide-based catalysts are promising for CO2 electroreduction (CO2RR) to CH4, but suffer from inevitable reduction (to metallic Cu) and uncontrollable structural collapse. Here we report Cu-based rock-salt-ordered double perovskite oxides with superexchange-stabilized long-distance Cu sites for efficient and stable CO2-to-CH4 conversion. For the proof-of-concept catalyst of Sr2CuWO6, its corner-linked CuO6 and WO6 octahedral motifs alternate in all three crystallographic dimensions, creating sufficiently long Cu-Cu distances (at least 5.4 Å) and introducing marked superexchange interaction mainly manifested by O-anion-mediated electron transfer (from Cu to W sites). In CO2RR, the Sr2CuWO6 exhibits significant improvements (up to 14.1 folds) in activity and selectivity for CH4, together with well boosted stability, relative to a physical-mixture counterpart of CuO/WO3. Moreover, the Sr2CuWO6 is the most effective Cu-based-perovskite catalyst for CO2 methanation, achieving a remarkable selectivity of 73.1% at 400 mA cm−2 for CH4. Our experiments and theoretical calculations highlight the long Cu-Cu distances promoting *CO hydrogenation and the superexchange interaction stabilizing Cu sites as responsible for the superb performance.

Suggested Citation

  • Jiawei Zhu & Yu Zhang & Zitao Chen & Zhenbao Zhang & Xuezeng Tian & Minghua Huang & Xuedong Bai & Xue Wang & Yongfa Zhu & Heqing Jiang, 2024. "Superexchange-stabilized long-distance Cu sites in rock-salt-ordered double perovskite oxides for CO2 electromethanation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45747-5
    DOI: 10.1038/s41467-024-45747-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45747-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45747-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    2. O. Mustonen & S. Vasala & E. Sadrollahi & K. P. Schmidt & C. Baines & H. C. Walker & I. Terasaki & F. J. Litterst & E. Baggio-Saitovitch & M. Karppinen, 2018. "Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10–d0 cation mixing," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jie Dai & Yinlong Zhu & Hassan A. Tahini & Qian Lin & Yu Chen & Daqin Guan & Chuan Zhou & Zhiwei Hu & Hong-Ji Lin & Ting-Shan Chan & Chien-Te Chen & Sean C. Smith & Huanting Wang & Wei Zhou & Zongping, 2020. "Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Qiong Lei & Liang Huang & Jun Yin & Bambar Davaasuren & Youyou Yuan & Xinglong Dong & Zhi-Peng Wu & Xiaoqian Wang & Ke Xin Yao & Xu Lu & Yu Han, 2022. "Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yao Yang & Sheena Louisia & Sunmoon Yu & Jianbo Jin & Inwhan Roh & Chubai Chen & Maria V. Fonseca Guzman & Julian Feijóo & Peng-Cheng Chen & Hongsen Wang & Christopher J. Pollock & Xin Huang & Yu-Tsun, 2023. "Operando studies reveal active Cu nanograins for CO2 electroreduction," Nature, Nature, vol. 614(7947), pages 262-269, February.
    7. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueshuang Mao & Bingnan Yu & Pengfei Wang & Shuai Yue & Sihui Zhan, 2024. "Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Hefei Li & Pengfei Wei & Tianfu Liu & Mingrun Li & Chao Wang & Rongtan Li & Jinyu Ye & Zhi-You Zhou & Shi-Gang Sun & Qiang Fu & Dunfeng Gao & Guoxiong Wang & Xinhe Bao, 2024. "CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Lei Wang & Zhiwen Chen & Yi Xiao & Linke Huang & Xiyang Wang & Holly Fruehwald & Dmitry Akhmetzyanov & Mathew Hanson & Zuolong Chen & Ning Chen & Brant Billinghurst & Rodney D. L. Smith & Chandra Veer, 2024. "Stabilized Cuδ+-OH species on in situ reconstructed Cu nanoparticles for CO2-to-C2H4 conversion in neutral media," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Kang Yang & Ming Li & Tianqi Gao & Guoliang Xu & Di Li & Yao Zheng & Qiang Li & Jingjing Duan, 2024. "An acid-tolerant metal-organic framework for industrial CO2 electrolysis using a proton exchange membrane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. SJ, Balaji & Babu, Suresh Chandra & Pal, Suresh, 2021. "Understanding Science and Policy Making in Agriculture: A Machine Learning Application for India," 2021 Conference, August 17-31, 2021, Virtual 315227, International Association of Agricultural Economists.
    18. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Bo Peng & Ye Wei & Yu Qin & Jiabao Dai & Yue Li & Aobo Liu & Yun Tian & Liuliu Han & Yufeng Zheng & Peng Wen, 2023. "Machine learning-enabled constrained multi-objective design of architected materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45747-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.