IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49866-x.html
   My bibliography  Save this article

Uneven consequences of global climate mitigation pathways on regional water quality in the 21st century

Author

Listed:
  • Minjin Lee

    (Princeton University; Princeton)

  • Charles A. Stock

    (NOAA/Geophysical Fluid Dynamics Laboratory; Princeton)

  • Elena Shevliakova

    (NOAA/Geophysical Fluid Dynamics Laboratory; Princeton)

  • Sergey Malyshev

    (NOAA/Geophysical Fluid Dynamics Laboratory; Princeton)

  • Maureen Beaudor

    (Princeton University)

  • Nicolas Vuichard

    (CEA–CNRS–UVSQ)

Abstract

Future socioeconomic climate pathways have regional water-quality consequences whose severity and equity have not yet been fully understood across geographic and economic spectra. We use a process-based, terrestrial-freshwater ecosystem model to project 21st-century river nitrogen loads under these pathways. We find that fertilizer usage is the primary determinant of future river nitrogen loads, changing precipitation and warming have limited impacts, and CO2 fertilization-induced vegetation growth enhancement leads to modest load reductions. Fertilizer applications to produce bioenergy in climate mitigation scenarios cause larger load increases than in the highest emission scenario. Loads generally increase in low-income regions, yet remain stable or decrease in high-income regions where agricultural advances, low food and feed production and waste, and/or well-enforced air pollution policies balance biofuel-associated fertilizer burdens. Consideration of biofuel production options with low fertilizer demand and rapid transfer of agricultural advances from high- to low-income regions may help avoid inequitable water-quality outcomes from climate mitigation.

Suggested Citation

  • Minjin Lee & Charles A. Stock & Elena Shevliakova & Sergey Malyshev & Maureen Beaudor & Nicolas Vuichard, 2024. "Uneven consequences of global climate mitigation pathways on regional water quality in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49866-x
    DOI: 10.1038/s41467-024-49866-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49866-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49866-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Sinha & A. M. Michalak & K. V. Calvin & P. J. Lawrence, 2019. "Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Mary H. Ward & Rena R. Jones & Jean D. Brender & Theo M. De Kok & Peter J. Weyer & Bernard T. Nolan & Cristina M. Villanueva & Simone G. Van Breda, 2018. "Drinking Water Nitrate and Human Health: An Updated Review," IJERPH, MDPI, vol. 15(7), pages 1-31, July.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Minjin Lee & Elena Shevliakova & Charles A. Stock & Sergey Malyshev & P. C. D. Milly, 2019. "Prominence of the tropics in the recent rise of global nitrogen pollution," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Popp, Alexander & Müller, Christoph, 2014. "Forecasting technological change in agriculture—An endogenous implementation in a global land use model," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 236-249.
    6. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    7. Simon L. Lewis & Gabriela Lopez-Gonzalez & Bonaventure Sonké & Kofi Affum-Baffoe & Timothy R. Baker & Lucas O. Ojo & Oliver L. Phillips & Jan M. Reitsma & Lee White & James A. Comiskey & Marie-Noël Dj, 2009. "Increasing carbon storage in intact African tropical forests," Nature, Nature, vol. 457(7232), pages 1003-1006, February.
    8. César Terrer & Robert B. Jackson & I. Colin Prentice & Trevor F. Keenan & Christina Kaiser & Sara Vicca & Joshua B. Fisher & Peter B. Reich & Benjamin D. Stocker & Bruce A. Hungate & Josep Peñuelas & , 2019. "Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass," Nature Climate Change, Nature, vol. 9(9), pages 684-689, September.
    9. Minjin Lee & Elena Shevliakova & Charles A. Stock & Sergey Malyshev & P. C. D. Milly, 2019. "Publisher Correction: Prominence of the tropics in the recent rise of global nitrogen pollution," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    10. Yuanzhi Yao & Hanqin Tian & Hao Shi & Shufen Pan & Rongting Xu & Naiqing Pan & Josep G. Canadell, 2020. "Increased global nitrous oxide emissions from streams and rivers in the Anthropocene," Nature Climate Change, Nature, vol. 10(2), pages 138-142, February.
    11. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    12. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    13. Patrick J. Mulholland & Ashley M. Helton & Geoffrey C. Poole & Robert O. Hall & Stephen K. Hamilton & Bruce J. Peterson & Jennifer L. Tank & Linda R. Ashkenas & Lee W. Cooper & Clifford N. Dahm & Walt, 2008. "Stream denitrification across biomes and its response to anthropogenic nitrate loading," Nature, Nature, vol. 452(7184), pages 202-205, March.
    14. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    2. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    4. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    5. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    6. Parinaz Rashidi & Sopan D. Patil & Aafke M. Schipper & Rob Alkemade & Isabel Rosa, 2023. "Downscaling Global Land-Use Scenario Data to the National Level: A Case Study for Belgium," Land, MDPI, vol. 12(9), pages 1-19, September.
    7. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    8. Kılkış, Şiir, 2024. "Urban emissions and land use efficiency scenarios for avoiding increments of global warming," Energy, Elsevier, vol. 307(C).
    9. Food and Agriculture Organization of the United Nations (FAO), "undated". "The future of food and agriculture – Alternative pathways to 2050," The Future of Food and Agriculture 319842, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    10. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    11. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    13. P. Marcos-Garcia & M. Pulido-Velazquez & C. Sanchis-Ibor & M. García-Mollá & M. Ortega-Reig & A. Garcia-Prats & C. Girard, 2023. "From local knowledge to decision making in climate change adaptation at basin scale. Application to the Jucar River Basin, Spain," Climatic Change, Springer, vol. 176(4), pages 1-23, April.
    14. Koundouri, Phoebe & Papayiannis, Georgios I. & Vassilopoulos, Achilleas & Yannacopoulos, Athanasios N., 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," MPRA Paper 122007, University Library of Munich, Germany.
    15. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    16. Confidence Duku & Carlos Alho & Rik Leemans & Annemarie Groot, 2022. "IFAD Research Series 72: Climate change and food system activities - a review of emission trends, climate impacts and the effects of dietary change," IFAD Research Series 320722, International Fund for Agricultural Development (IFAD).
    17. Enrica Cian & Ian Sue Wing, 2019. "Global Energy Consumption in a Warming Climate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(2), pages 365-410, February.
    18. Vivek Srikrishnan & Yawen Guan & Richard S. J. Tol & Klaus Keller, 2022. "Probabilistic projections of baseline twenty-first century CO2 emissions using a simple calibrated integrated assessment model," Climatic Change, Springer, vol. 170(3), pages 1-20, February.
    19. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    20. Walelign, Solomon Zena & Lujala, Päivi, 2022. "A place-based framework for assessing resettlement capacity in the context of displacement induced by climate change," World Development, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49866-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.