IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36523-y.html
   My bibliography  Save this article

TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models

Author

Listed:
  • Jun-Yan Li

    (Sun Yat-sen University Cancer Center)

  • Yin Zhao

    (Sun Yat-sen University Cancer Center)

  • Sha Gong

    (Sun Yat-sen University Cancer Center)

  • Miao-Miao Wang

    (Sun Yat-sen University Cancer Center)

  • Xu Liu

    (Sun Yat-sen University Cancer Center)

  • Qing-Mei He

    (Sun Yat-sen University Cancer Center)

  • Ying-Qin Li

    (Sun Yat-sen University Cancer Center)

  • Sheng-Yan Huang

    (Sun Yat-sen University Cancer Center)

  • Han Qiao

    (Sun Yat-sen University Cancer Center)

  • Xi-Rong Tan

    (Sun Yat-sen University Cancer Center)

  • Ming-Liang Ye

    (Sun Yat-sen University Cancer Center)

  • Xun-Hua Zhu

    (Sun Yat-sen University Cancer Center)

  • Shi-Wei He

    (Sun Yat-sen University Cancer Center)

  • Qian Li

    (Sun Yat-sen University Cancer Center)

  • Ye-Lin Liang

    (Sun Yat-sen University Cancer Center)

  • Kai-Lin Chen

    (Sun Yat-sen University Cancer Center)

  • Sai-Wei Huang

    (Sun Yat-sen University Cancer Center)

  • Qing-Jie Li

    (Sun Yat-sen University Cancer Center)

  • Jun Ma

    (Sun Yat-sen University Cancer Center
    Nanjing Medical University)

  • Na Liu

    (Sun Yat-sen University Cancer Center)

Abstract

Although radiotherapy can promote antitumour immunity, the mechanisms underlying this phenomenon remain unclear. Here, we demonstrate that the expression of the E3 ubiquitin ligase, tumour cell-intrinsic tripartite motif-containing 21 (TRIM21) in tumours, is inversely associated with the response to radiation and CD8+ T cell-mediated antitumour immunity in nasopharyngeal carcinoma (NPC). Knockout of TRIM21 modulates the cGAS/STING cytosolic DNA sensing pathway, potentiates the antigen-presenting capacity of NPC cells, and activates cytotoxic T cell-mediated antitumour immunity in response to radiation. Mechanistically, TRIM21 promotes the degradation of the mitochondrial voltage-dependent anion-selective channel protein 2 (VDAC2) via K48-linked ubiquitination, which inhibits pore formation by VDAC2 oligomers for mitochondrial DNA (mtDNA) release, thereby inhibiting type-I interferon responses following radiation exposure. In patients with NPC, high TRIM21 expression was associated with poor prognosis and early tumour relapse after radiotherapy. Our findings reveal a critical role of TRIM21 in radiation-induced antitumour immunity, providing potential targets for improving the efficacy of radiotherapy in patients with NPC.

Suggested Citation

  • Jun-Yan Li & Yin Zhao & Sha Gong & Miao-Miao Wang & Xu Liu & Qing-Mei He & Ying-Qin Li & Sheng-Yan Huang & Han Qiao & Xi-Rong Tan & Ming-Liang Ye & Xun-Hua Zhu & Shi-Wei He & Qian Li & Ye-Lin Liang & , 2023. "TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36523-y
    DOI: 10.1038/s41467-023-36523-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36523-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36523-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Chen & Yin Zhao & Xiaojing Yang & Xianyue Ren & Shengyan Huang & Sha Gong & Xirong Tan & Junyan Li & Shiwei He & Yingqin Li & Xiaohong Hong & Qian Li & Cong Ding & Xueliang Fang & Jun Ma & Na Liu, 2022. "USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Nicholas Yagoda & Moritz von Rechenberg & Elma Zaganjor & Andras J. Bauer & Wan Seok Yang & Daniel J. Fridman & Adam J. Wolpaw & Inese Smukste & John M. Peltier & J. Jay Boniface & Richard Smith & Ste, 2007. "RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels," Nature, Nature, vol. 447(7146), pages 865-869, June.
    3. Yongfei Yang & Meiying Luo & Kexin Zhang & Jun Zhang & Tongtong Gao & Douglas O’ Connell & Fengping Yao & Changwen Mu & Bingyu Cai & Yuxue Shang & Wei Chen, 2020. "Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juewon Kim & Yunju Jo & Donghyun Cho & Dongryeol Ryu, 2022. "L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Yutian Zou & Shaoquan Zheng & Xinhua Xie & Feng Ye & Xiaoqian Hu & Zhi Tian & Shu-Mei Yan & Lu Yang & Yanan Kong & Yuhui Tang & Wenwen Tian & Jindong Xie & Xinpei Deng & Yan Zeng & Zhe-Sheng Chen & Ha, 2022. "N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Ye-Lin Liang & Yuan Zhang & Xi-Rong Tan & Han Qiao & Song-Ran Liu & Ling-Long Tang & Yan-Ping Mao & Lei Chen & Wen-Fei Li & Guan-Qun Zhou & Yin Zhao & Jun-Yan Li & Qian Li & Sheng-Yan Huang & Sha Gong, 2022. "A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36523-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.