IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50808-w.html
   My bibliography  Save this article

Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking

Author

Listed:
  • Suguru Takagi

    (University of Lausanne)

  • Gizem Sancer

    (Yale University)

  • Liliane Abuin

    (University of Lausanne)

  • S. David Stupski

    (University of Nevada)

  • J. Roman Arguello

    (University of Lausanne
    University of Lausanne
    Queen Mary University of London)

  • Lucia L. Prieto-Godino

    (University of Lausanne
    The Francis Crick Institute)

  • David L. Stern

    (Janelia Research Campus of the Howard Hughes Medical Institute)

  • Steeve Cruchet

    (University of Lausanne)

  • Raquel Álvarez-Ocaña

    (University of Lausanne)

  • Carl F. R. Wienecke

    (Stanford University
    Harvard Medical School)

  • Floris Breugel

    (University of Nevada)

  • James M. Jeanne

    (Yale University)

  • Thomas O. Auer

    (University of Lausanne
    University of Fribourg)

  • Richard Benton

    (University of Lausanne)

Abstract

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.

Suggested Citation

  • Suguru Takagi & Gizem Sancer & Liliane Abuin & S. David Stupski & J. Roman Arguello & Lucia L. Prieto-Godino & David L. Stern & Steeve Cruchet & Raquel Álvarez-Ocaña & Carl F. R. Wienecke & Floris Bre, 2024. "Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50808-w
    DOI: 10.1038/s41467-024-50808-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50808-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50808-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juan Antonio Sánchez-Alcañiz & Giovanna Zappia & Frédéric Marion-Poll & Richard Benton, 2017. "A mechanosensory receptor required for food texture detection in Drosophila," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    2. Quentin Gaudry & Elizabeth J. Hong & Jamey Kain & Benjamin L. de Bivort & Rachel I. Wilson, 2013. "Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila," Nature, Nature, vol. 493(7432), pages 424-428, January.
    3. Kaitlyn Elizabeth Ellis & Sven Bervoets & Hayley Smihula & Ishani Ganguly & Eva Vigato & Thomas O. Auer & Richard Benton & Ashok Litwin-Kumar & Sophie Jeanne Cécile Caron, 2024. "Evolution of connectivity architecture in the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Phing Chian Chai & Steeve Cruchet & Leonore Wigger & Richard Benton, 2019. "Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    5. Thomas O. Auer & Mohammed A. Khallaf & Ana F. Silbering & Giovanna Zappia & Kaitlyn Ellis & Raquel Álvarez-Ocaña & J. Roman Arguello & Bill S. Hansson & Gregory S. X. E. Jefferis & Sophie J. C. Caron , 2020. "Olfactory receptor and circuit evolution promote host specialization," Nature, Nature, vol. 579(7799), pages 402-408, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raquel Álvarez-Ocaña & Michael P. Shahandeh & Vijayaditya Ray & Thomas O. Auer & Nicolas Gompel & Richard Benton, 2023. "Odor-regulated oviposition behavior in an ecological specialist," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Gwénaëlle Bontonou & Bastien Saint-Leandre & Tane Kafle & Tess Baticle & Afrah Hassan & Juan Antonio Sánchez-Alcañiz & J. Roman Arguello, 2024. "Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Ishani Ganguly & Emily L. Heckman & Ashok Litwin-Kumar & E. Josephine Clowney & Rudy Behnia, 2024. "Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Kaitlyn Elizabeth Ellis & Sven Bervoets & Hayley Smihula & Ishani Ganguly & Eva Vigato & Thomas O. Auer & Richard Benton & Ashok Litwin-Kumar & Sophie Jeanne Cécile Caron, 2024. "Evolution of connectivity architecture in the Drosophila mushroom body," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Liangyu Tao & Samuel P. Wechsler & Vikas Bhandawat, 2023. "Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Minhao Li & Dawn S. Chen & Ian P. Junker & Fabianna I. Szorenyi & Guan Hao Chen & Arnold J. Berger & Aaron A. Comeault & Daniel R. Matute & Yun Ding, 2024. "Ancestral neural circuits potentiate the origin of a female sexual behavior in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Nan-Ji Jiang & Xinqi Dong & Daniel Veit & Bill S. Hansson & Markus Knaden, 2024. "Elevated ozone disrupts mating boundaries in drosophilid flies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Liangyu Tao & Siddhi Ozarkar & Vikas Bhandawat, 2020. "Mechanisms underlying attraction to odors in walking Drosophila," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-26, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50808-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.