IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49420-9.html
   My bibliography  Save this article

Structural basis for urate recognition and apigenin inhibition of human GLUT9

Author

Listed:
  • Zilin Shen

    (Tsinghua University)

  • Li Xu

    (Shenzhen Medical Academy of Research and Translation (SMART))

  • Tong Wu

    (Tsinghua University)

  • Huan Wang

    (Tsinghua University)

  • Qifan Wang

    (Tsinghua University)

  • Xiaofei Ge

    (Tsinghua University)

  • Fang Kong

    (Tsinghua University)

  • Gaoxingyu Huang

    (Westlake University
    Westlake Institute for Advanced Study)

  • Xiaojing Pan

    (Shenzhen Medical Academy of Research and Translation (SMART))

Abstract

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9’s substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.

Suggested Citation

  • Zilin Shen & Li Xu & Tong Wu & Huan Wang & Qifan Wang & Xiaofei Ge & Fang Kong & Gaoxingyu Huang & Xiaojing Pan, 2024. "Structural basis for urate recognition and apigenin inhibition of human GLUT9," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49420-9
    DOI: 10.1038/s41467-024-49420-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49420-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49420-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Dong Deng & Chao Xu & Pengcheng Sun & Jianping Wu & Chuangye Yan & Mingxu Hu & Nieng Yan, 2014. "Crystal structure of the human glucose transporter GLUT1," Nature, Nature, vol. 510(7503), pages 121-125, June.
    3. Dong Deng & Pengcheng Sun & Chuangye Yan & Meng Ke & Xin Jiang & Lei Xiong & Wenlin Ren & Kunio Hirata & Masaki Yamamoto & Shilong Fan & Nieng Yan, 2015. "Molecular basis of ligand recognition and transport by glucose transporters," Nature, Nature, vol. 526(7573), pages 391-396, October.
    4. Norimichi Nomura & Grégory Verdon & Hae Joo Kang & Tatsuro Shimamura & Yayoi Nomura & Yo Sonoda & Saba Abdul Hussien & Aziz Abdul Qureshi & Mathieu Coincon & Yumi Sato & Hitomi Abe & Yoshiko Nakada-Na, 2015. "Structure and mechanism of the mammalian fructose transporter GLUT5," Nature, Nature, vol. 526(7573), pages 397-401, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Suades & Aziz Qureshi & Sarah E. McComas & Mathieu Coinçon & Axel Rudling & Yurie Chatzikyriakidou & Michael Landreh & Jens Carlsson & David Drew, 2023. "Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Monique R Heitmeier & Richard C Hresko & Rachel L Edwards & Michael J Prinsen & Ma Xenia G Ilagan & Audrey R Odom John & Paul W Hruz, 2019. "Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein ," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    5. Nan Wang & Shuo Zhang & Yafei Yuan & Hanwen Xu & Elisabeth Defossa & Hans Matter & Melissa Besenius & Volker Derdau & Matthias Dreyer & Nis Halland & Kaihui Hu He & Stefan Petry & Michael Podeschwa & , 2022. "Molecular basis for inhibiting human glucose transporters by exofacial inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jie Sun & Xiaoran Roger Liu & Shuang Li & Peng He & Weikai Li & Michael L. Gross, 2021. "Nanoparticles and photochemistry for native-like transmembrane protein footprinting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Qingqing Yan & Shuyi An & Liang Yu & Shenfang Li & Xiaonan Wu & Siqi Dong & Shunshun Xiong & Hao Wang & Sujing Wang & Jiangfeng Du, 2024. "A Ni4O4-cubane-squarate coordination framework for molecular recognition," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Yi C. Zeng & Meghna Sobti & Ada Quinn & Nicola J. Smith & Simon H. J. Brown & Jamie I. Vandenberg & Renae M. Ryan & Megan L. O’Mara & Alastair G. Stewart, 2023. "Structural basis of promiscuous substrate transport by Organic Cation Transporter 1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Basavraj Khanppnavar & Julian Maier & Freja Herborg & Ralph Gradisch & Erika Lazzarin & Dino Luethi & Jae-Won Yang & Chao Qi & Marion Holy & Kathrin Jäntsch & Oliver Kudlacek & Klaus Schicker & Thomas, 2022. "Structural basis of organic cation transporter-3 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Yajun Fang & Yuntian Yang & Rui Xu & Mingyun Liang & Qi Mou & Shuixia Chen & Jehan Kim & Long Yi Jin & Myongsoo Lee & Zhegang Huang, 2023. "Hierarchical porous photosensitizers with efficient photooxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Chen Wang & Leiye Yu & Jiying Zhang & Yanxia Zhou & Bo Sun & Qingjie Xiao & Minhua Zhang & Huayi Liu & Jinhong Li & Jialu Li & Yunzi Luo & Jie Xu & Zhong Lian & Jingwen Lin & Xiang Wang & Peng Zhang &, 2023. "Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Jody L. Andersen & Gui-Xin He & Prathusha Kakarla & Ranjana KC & Sanath Kumar & Wazir Singh Lakra & Mun Mun Mukherjee & Indrika Ranaweera & Ugina Shrestha & Thuy Tran & Manuel F. Varela, 2015. "Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens," IJERPH, MDPI, vol. 12(2), pages 1-61, January.
    16. Titouan Jaunet-Lahary & Tatsuro Shimamura & Masahiro Hayashi & Norimichi Nomura & Kouta Hirasawa & Tetsuya Shimizu & Masao Yamashita & Naotaka Tsutsumi & Yuta Suehiro & Keiichi Kojima & Yuki Sudo & Ta, 2023. "Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49420-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.