IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39711-y.html
   My bibliography  Save this article

Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system

Author

Listed:
  • Albert Suades

    (Stockholm University)

  • Aziz Qureshi

    (Stockholm University)

  • Sarah E. McComas

    (Stockholm University)

  • Mathieu Coinçon

    (Stockholm University)

  • Axel Rudling

    (Uppsala University, BMC)

  • Yurie Chatzikyriakidou

    (Stockholm University)

  • Michael Landreh

    (Karolinska Institutet)

  • Jens Carlsson

    (Uppsala University, BMC)

  • David Drew

    (Stockholm University)

Abstract

Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.

Suggested Citation

  • Albert Suades & Aziz Qureshi & Sarah E. McComas & Mathieu Coinçon & Axel Rudling & Yurie Chatzikyriakidou & Michael Landreh & Jens Carlsson & David Drew, 2023. "Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39711-y
    DOI: 10.1038/s41467-023-39711-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39711-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39711-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linfeng Sun & Xin Zeng & Chuangye Yan & Xiuyun Sun & Xinqi Gong & Yu Rao & Nieng Yan, 2012. "Crystal structure of a bacterial homologue of glucose transporters GLUT1–4," Nature, Nature, vol. 490(7420), pages 361-366, October.
    2. Chloe Martens & Mrinal Shekhar & Antoni J. Borysik & Andy M. Lau & Eamonn Reading & Emad Tajkhorshid & Paula J. Booth & Argyris Politis, 2018. "Direct protein-lipid interactions shape the conformational landscape of secondary transporters," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Abdul Aziz Qureshi & Albert Suades & Rei Matsuoka & Joseph Brock & Sarah E. McComas & Emmanuel Nji & Laura Orellana & Magnus Claesson & Lucie Delemotte & David Drew, 2020. "The molecular basis for sugar import in malaria parasites," Nature, Nature, vol. 578(7794), pages 321-325, February.
    4. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Dong Deng & Chao Xu & Pengcheng Sun & Jianping Wu & Chuangye Yan & Mingxu Hu & Nieng Yan, 2014. "Crystal structure of the human glucose transporter GLUT1," Nature, Nature, vol. 510(7503), pages 121-125, June.
    6. Dong Deng & Pengcheng Sun & Chuangye Yan & Meng Ke & Xin Jiang & Lei Xiong & Wenlin Ren & Kunio Hirata & Masaki Yamamoto & Shilong Fan & Nieng Yan, 2015. "Molecular basis of ligand recognition and transport by glucose transporters," Nature, Nature, vol. 526(7573), pages 391-396, October.
    7. Norimichi Nomura & Grégory Verdon & Hae Joo Kang & Tatsuro Shimamura & Yayoi Nomura & Yo Sonoda & Saba Abdul Hussien & Aziz Abdul Qureshi & Mathieu Coincon & Yumi Sato & Hitomi Abe & Yoshiko Nakada-Na, 2015. "Structure and mechanism of the mammalian fructose transporter GLUT5," Nature, Nature, vol. 526(7573), pages 397-401, October.
    8. Goragot Wisedchaisri & Min-Sun Park & Matthew G. Iadanza & Hongjin Zheng & Tamir Gonen, 2014. "Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Zilin Shen & Li Xu & Tong Wu & Huan Wang & Qifan Wang & Xiaofei Ge & Fang Kong & Gaoxingyu Huang & Xiaojing Pan, 2024. "Structural basis for urate recognition and apigenin inhibition of human GLUT9," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Nan Wang & Shuo Zhang & Yafei Yuan & Hanwen Xu & Elisabeth Defossa & Hans Matter & Melissa Besenius & Volker Derdau & Matthias Dreyer & Nis Halland & Kaihui Hu He & Stefan Petry & Michael Podeschwa & , 2022. "Molecular basis for inhibiting human glucose transporters by exofacial inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Monique R Heitmeier & Richard C Hresko & Rachel L Edwards & Michael J Prinsen & Ma Xenia G Ilagan & Audrey R Odom John & Paul W Hruz, 2019. "Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein ," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    5. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yi C. Zeng & Meghna Sobti & Ada Quinn & Nicola J. Smith & Simon H. J. Brown & Jamie I. Vandenberg & Renae M. Ryan & Megan L. O’Mara & Alastair G. Stewart, 2023. "Structural basis of promiscuous substrate transport by Organic Cation Transporter 1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Reza Dastvan & Ali Rasouli & Sepehr Dehghani-Ghahnaviyeh & Samantha Gies & Emad Tajkhorshid, 2022. "Proton-driven alternating access in a spinster lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Jody L. Andersen & Gui-Xin He & Prathusha Kakarla & Ranjana KC & Sanath Kumar & Wazir Singh Lakra & Mun Mun Mukherjee & Indrika Ranaweera & Ugina Shrestha & Thuy Tran & Manuel F. Varela, 2015. "Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens," IJERPH, MDPI, vol. 12(2), pages 1-61, January.
    9. Jie Sun & Xiaoran Roger Liu & Shuang Li & Peng He & Weikai Li & Michael L. Gross, 2021. "Nanoparticles and photochemistry for native-like transmembrane protein footprinting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Basavraj Khanppnavar & Julian Maier & Freja Herborg & Ralph Gradisch & Erika Lazzarin & Dino Luethi & Jae-Won Yang & Chao Qi & Marion Holy & Kathrin Jäntsch & Oliver Kudlacek & Klaus Schicker & Thomas, 2022. "Structural basis of organic cation transporter-3 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yajun Fang & Yuntian Yang & Rui Xu & Mingyun Liang & Qi Mou & Shuixia Chen & Jehan Kim & Long Yi Jin & Myongsoo Lee & Zhegang Huang, 2023. "Hierarchical porous photosensitizers with efficient photooxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Chen Ling & George L. Peabody & Davinia Salvachúa & Young-Mo Kim & Colin M. Kneucker & Christopher H. Calvey & Michela A. Monninger & Nathalie Munoz Munoz & Brenton C. Poirier & Kelsey J. Ramirez & Pe, 2022. "Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Chen Wang & Leiye Yu & Jiying Zhang & Yanxia Zhou & Bo Sun & Qingjie Xiao & Minhua Zhang & Huayi Liu & Jinhong Li & Jialu Li & Yunzi Luo & Jie Xu & Zhong Lian & Jingwen Lin & Xiang Wang & Peng Zhang &, 2023. "Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Titouan Jaunet-Lahary & Tatsuro Shimamura & Masahiro Hayashi & Norimichi Nomura & Kouta Hirasawa & Tetsuya Shimizu & Masao Yamashita & Naotaka Tsutsumi & Yuta Suehiro & Keiichi Kojima & Yuki Sudo & Ta, 2023. "Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Sille Remm & Dario Vecchis & Jendrik Schöppe & Cedric A. J. Hutter & Imre Gonda & Michael Hohl & Simon Newstead & Lars V. Schäfer & Markus A. Seeger, 2023. "Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39711-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.