IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53335-w.html
   My bibliography  Save this article

Redox-mediated decoupled seawater direct splitting for H2 production

Author

Listed:
  • Tao Liu

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University
    Shenzhen University)

  • Cheng Lan

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University)

  • Min Tang

    (Sichuan University-Pittsburgh Institute)

  • Mengxin Li

    (Sichuan University
    Shenzhen University)

  • Yitao Xu

    (Sichuan University-Pittsburgh Institute)

  • Hangrui Yang

    (Sichuan University)

  • Qingyue Deng

    (Sichuan University-Pittsburgh Institute)

  • Wenchuan Jiang

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University)

  • Zhiyu Zhao

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University)

  • Yifan Wu

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University)

  • Heping Xie

    (Sichuan University & Shenzhen University
    Sichuan University
    Shenzhen University
    Shenzhen University)

Abstract

Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O2 evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)6]3−/4−) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm−2 and ~1.57 V at 100 mA cm−2) and maintaining stability even in a Cl−-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.

Suggested Citation

  • Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53335-w
    DOI: 10.1038/s41467-024-53335-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53335-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53335-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
    2. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    3. Luo Yu & Qing Zhu & Shaowei Song & Brian McElhenny & Dezhi Wang & Chunzheng Wu & Zhaojun Qin & Jiming Bao & Ying Yu & Shuo Chen & Zhifeng Ren, 2019. "Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    5. Fu Sun & Jingshan Qin & Zhiyu Wang & Mengzhou Yu & Xianhong Wu & Xiaoming Sun & Jieshan Qiu, 2021. "Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tao Liu & Zhiyu Zhao & Wenbin Tang & Yi Chen & Cheng Lan & Liangyu Zhu & Wenchuan Jiang & Yifan Wu & Yunpeng Wang & Zezhou Yang & Dongsheng Yang & Qijun Wang & Lunbo Luo & Taisheng Liu & Heping Xie, 2024. "In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    8. Wei Liu & Jiage Yu & Tianshui Li & Shihang Li & Boyu Ding & Xinlong Guo & Aiqing Cao & Qihao Sha & Daojin Zhou & Yun Kuang & Xiaoming Sun, 2024. "Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Thomas Adisorn & Maike Venjakob & Julia Pössinger & Sibel Raquel Ersoy & Oliver Wagner & Raphael Moser, 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Xiao-Long Zhang & Peng-Cheng Yu & Shu-Ping Sun & Lei Shi & Peng-Peng Yang & Zhi-Zheng Wu & Li-Ping Chi & Ya-Rong Zheng & Min-Rui Gao, 2024. "In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Tongtong Li & Boran Wang & Yu Cao & Zhexuan Liu & Shaogang Wang & Qi Zhang & Jie Sun & Guangmin Zhou, 2024. "Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Liu, Zhao & Han, Beibei & Lu, Zhiyi & Guan, Wanbing & Li, Yuanyuan & Song, Changjiang & Chen, Liang & Singhal, Subhash C., 2021. "Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 300(C).
    16. Wan Jae Dong & Yixin Xiao & Ke R. Yang & Zhengwei Ye & Peng Zhou & Ishtiaque Ahmed Navid & Victor S. Batista & Zetian Mi, 2023. "Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Fei Lv & Jiazhe Wu & Xuan Liu & Zhihao Zheng & Lixia Pan & Xuewen Zheng & Liejin Guo & Yubin Chen, 2024. "Decoupled electrolysis for hydrogen production and hydrazine oxidation via high-capacity and stable pre-protonated vanadium hexacyanoferrate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.
    20. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53335-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.