IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49178-0.html
   My bibliography  Save this article

Sororin is an evolutionary conserved antagonist of WAPL

Author

Listed:
  • Ignacio Prusén Mota

    (Vienna Biocenter Campus (VBC)
    Department of Chromosome Biology
    a Doctoral School of the University of Vienna and the Medical University of Vienna)

  • Marta Galova

    (Vienna Biocenter (VBC))

  • Alexander Schleiffer

    (Vienna Biocenter (VBC))

  • Tan-Trung Nguyen

    (Vienna Biocenter Campus (VBC)
    Department of Chromosome Biology)

  • Ines Kovacikova

    (Department of Chromosome Biology)

  • Carolina Farias Saad

    (Vienna Biocenter Campus (VBC)
    Department of Chromosome Biology
    a Doctoral School of the University of Vienna and the Medical University of Vienna)

  • Gabriele Litos

    (Vienna Biocenter (VBC))

  • Tomoko Nishiyama

    (Vienna Biocenter (VBC))

  • Juraj Gregan

    (Department of Chromosome Biology
    University of Natural Resources and Life Sciences)

  • Jan-Michael Peters

    (Vienna Biocenter (VBC))

  • Peter Schlögelhofer

    (Vienna Biocenter Campus (VBC)
    Department of Chromosome Biology)

Abstract

Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN’s functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.

Suggested Citation

  • Ignacio Prusén Mota & Marta Galova & Alexander Schleiffer & Tan-Trung Nguyen & Ines Kovacikova & Carolina Farias Saad & Gabriele Litos & Tomoko Nishiyama & Juraj Gregan & Jan-Michael Peters & Peter Sc, 2024. "Sororin is an evolutionary conserved antagonist of WAPL," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49178-0
    DOI: 10.1038/s41467-024-49178-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49178-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49178-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasuto Murayama & Frank Uhlmann, 2014. "Biochemical reconstitution of topological DNA binding by the cohesin ring," Nature, Nature, vol. 505(7483), pages 367-371, January.
    2. Tomoya S. Kitajima & Takeshi Sakuno & Kei-ichiro Ishiguro & Shun-ichiro Iemura & Tohru Natsume & Shigehiro A. Kawashima & Yoshinori Watanabe, 2006. "Shugoshin collaborates with protein phosphatase 2A to protect cohesin," Nature, Nature, vol. 441(7089), pages 46-52, May.
    3. Chao Yang & Yuki Hamamura & Kostika Sofroni & Franziska Böwer & Sara Christina Stolze & Hirofumi Nakagami & Arp Schnittger, 2019. "SWITCH 1/DYAD is a WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    4. Yan Li & Judith H. I. Haarhuis & Ángela Sedeño Cacciatore & Roel Oldenkamp & Marjon S. Ruiten & Laureen Willems & Hans Teunissen & Kyle W. Muir & Elzo Wit & Benjamin D. Rowland & Daniel Panne, 2020. "The structural basis for cohesin–CTCF-anchored loops," Nature, Nature, vol. 578(7795), pages 472-476, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Ayantika Sen Gupta & Chris Seidel & Dai Tsuchiya & Sean McKinney & Zulin Yu & Sarah E. Smith & Jay R. Unruh & Jennifer L. Gerton, 2023. "Defining a core configuration for human centromeres during mitosis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Jie Zhang & Gongcheng Hu & Yuli Lu & Huawei Ren & Yin Huang & Yulin Wen & Binrui Ji & Diyang Wang & Haidong Wang & Huisheng Liu & Ning Ma & Lingling Zhang & Guangjin Pan & Yibo Qu & Hua Wang & Wei Zha, 2024. "CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. A. Danylevska & J. Sebestova, 2013. "Causes and consequences of maternal age-related aneuploidy in oocytes: a review," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 58(2), pages 65-72.
    8. Anna-Maria Göbel & Sida Zhou & Zhidan Wang & Sofia Tzourtzou & Axel Himmelbach & Shiwei Zheng & Mónica Pradillo & Chang Liu & Hua Jiang, 2024. "Mutations of PDS5 genes enhance TAD-like domain formation in Arabidopsis thaliana," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Aditi Kaushik & Thane Than & Naomi J. Petela & Menelaos Voulgaris & Charlotte Percival & Peter Daniels & John B. Rafferty & Kim A. Nasmyth & Bin Hu, 2023. "Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Georgii Pobegalov & Lee-Ya Chu & Jan-Michael Peters & Maxim I. Molodtsov, 2023. "Single cohesin molecules generate force by two distinct mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49178-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.