IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41596-w.html
   My bibliography  Save this article

Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding

Author

Listed:
  • Aditi Kaushik

    (University of Aberdeen)

  • Thane Than

    (University of Sheffield)

  • Naomi J. Petela

    (University of Oxford)

  • Menelaos Voulgaris

    (University of Oxford)

  • Charlotte Percival

    (University of Sheffield)

  • Peter Daniels

    (University of Sheffield)

  • John B. Rafferty

    (University of Sheffield)

  • Kim A. Nasmyth

    (University of Oxford)

  • Bin Hu

    (University of Aberdeen)

Abstract

The ring-shaped cohesin complex is a key player in sister chromatid cohesion, DNA repair, and gene transcription. The loading of cohesin to chromosomes requires the loader Scc2 and is regulated by ATP. This process is hindered by Smc3 acetylation. However, the molecular mechanism underlying this inhibition remains mysterious. Here, using Saccharomyces cerevisiae as a model system, we identify a novel configuration of Scc2 with pre-engaged cohesin and reveal dynamic conformations of the cohesin/Scc2 complex in the loading reaction. We demonstrate that Smc3 acetylation blocks the association of Scc2 with pre-engaged cohesin by impairing the interaction of Scc2 with Smc3’s head. Lastly, we show that ATP binding induces the cohesin/Scc2 complex to clamp DNA by promoting the interaction between Scc2 and Smc3 coiled coil. Our results illuminate a dynamic reconfiguration of the cohesin/Scc2 complex during loading and indicate how Smc3 acetylation and ATP regulate this process.

Suggested Citation

  • Aditi Kaushik & Thane Than & Naomi J. Petela & Menelaos Voulgaris & Charlotte Percival & Peter Daniels & John B. Rafferty & Kim A. Nasmyth & Bin Hu, 2023. "Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41596-w
    DOI: 10.1038/s41467-023-41596-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41596-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41596-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasuto Murayama & Frank Uhlmann, 2014. "Biochemical reconstitution of topological DNA binding by the cohesin ring," Nature, Nature, vol. 505(7483), pages 367-371, January.
    2. Matthew A. Deardorff & Masashige Bando & Ryuichiro Nakato & Erwan Watrin & Takehiko Itoh & Masashi Minamino & Katsuya Saitoh & Makiko Komata & Yuki Katou & Dinah Clark & Kathryn E. Cole & Elfride De B, 2012. "HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle," Nature, Nature, vol. 489(7415), pages 313-317, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Dácil Alonso-Gil & Ana Cuadrado & Daniel Giménez-Llorente & Miriam Rodríguez-Corsino & Ana Losada, 2023. "Different NIPBL requirements of cohesin-STAG1 and cohesin-STAG2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Michael F. Emmons & Richard L. Bennett & Alberto Riva & Kanchan Gupta & Larissa Anastasio Da Costa Carvalho & Chao Zhang & Robert Macaulay & Daphne Dupéré-Richér & Bin Fang & Edward Seto & John M. Koo, 2023. "HDAC8-mediated inhibition of EP300 drives a transcriptional state that increases melanoma brain metastasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Ignacio Prusén Mota & Marta Galova & Alexander Schleiffer & Tan-Trung Nguyen & Ines Kovacikova & Carolina Farias Saad & Gabriele Litos & Tomoko Nishiyama & Juraj Gregan & Jan-Michael Peters & Peter Sc, 2024. "Sororin is an evolutionary conserved antagonist of WAPL," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Georgii Pobegalov & Lee-Ya Chu & Jan-Michael Peters & Maxim I. Molodtsov, 2023. "Single cohesin molecules generate force by two distinct mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41596-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.