IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34276-8.html
   My bibliography  Save this article

Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops

Author

Listed:
  • Shuai Liu

    (National Institutes of Health)

  • Yaqiang Cao

    (National Institutes of Health)

  • Kairong Cui

    (National Institutes of Health)

  • Qingsong Tang

    (National Institutes of Health)

  • Keji Zhao

    (National Institutes of Health)

Abstract

The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.

Suggested Citation

  • Shuai Liu & Yaqiang Cao & Kairong Cui & Qingsong Tang & Keji Zhao, 2022. "Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34276-8
    DOI: 10.1038/s41467-022-34276-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34276-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34276-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melissa J. Fullwood & Mei Hui Liu & You Fu Pan & Jun Liu & Han Xu & Yusoff Bin Mohamed & Yuriy L. Orlov & Stoyan Velkov & Andrea Ho & Poh Huay Mei & Elaine G. Y. Chew & Phillips Yao Hui Huang & Willem, 2009. "An oestrogen-receptor-α-bound human chromatin interactome," Nature, Nature, vol. 462(7269), pages 58-64, November.
    2. Xuefei Zhang & Yu Zhang & Zhaoqing Ba & Nia Kyritsis & Rafael Casellas & Frederick W. Alt, 2019. "Fundamental roles of chromatin loop extrusion in antibody class switching," Nature, Nature, vol. 575(7782), pages 385-389, November.
    3. Tiffany Chern & Annita Achilleos & Xuefei Tong & Matthew C. Hill & Alexander B. Saltzman & Lucas C. Reineke & Arindam Chaudhury & Swapan K. Dasgupta & Yushi Redhead & David Watkins & Joel R. Neilson &, 2022. "Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Hai-Qiang Dai & Hongli Hu & Jiangman Lou & Adam Yongxin Ye & Zhaoqing Ba & Xuefei Zhang & Yiwen Zhang & Lijuan Zhao & Hye Suk Yoon & Aimee M. Chapdelaine-Williams & Nia Kyritsis & Huan Chen & Kerstin , 2021. "Loop extrusion mediates physiological Igh locus contraction for RAG scanning," Nature, Nature, vol. 590(7845), pages 338-343, February.
    5. Yan Li & Judith H. I. Haarhuis & Ángela Sedeño Cacciatore & Roel Oldenkamp & Marjon S. Ruiten & Laureen Willems & Hans Teunissen & Kyle W. Muir & Elzo Wit & Benjamin D. Rowland & Daniel Panne, 2020. "The structural basis for cohesin–CTCF-anchored loops," Nature, Nature, vol. 578(7795), pages 472-476, February.
    6. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    7. Fabian Grubert & Rohith Srivas & Damek V Spacek & Maya Kasowski & Mariana Ruiz-Velasco & Nasa Sinnott-Armstrong & Peyton Greenside & Anil Narasimha & Qing Liu & Benjamin Geller & Akshay Sanghi & Micha, 2020. "Landscape of cohesin-mediated chromatin loops in the human genome," Nature, Nature, vol. 583(7818), pages 737-743, July.
    8. Kerstin S. Wendt & Keisuke Yoshida & Takehiko Itoh & Masashige Bando & Birgit Koch & Erika Schirghuber & Shuichi Tsutsumi & Genta Nagae & Ko Ishihara & Tsuyoshi Mishiro & Kazuhide Yahata & Fumio Imamo, 2008. "Cohesin mediates transcriptional insulation by CCCTC-binding factor," Nature, Nature, vol. 451(7180), pages 796-801, February.
    9. Yu Zhang & Xuefei Zhang & Zhaoqing Ba & Zhuoyi Liang & Edward W. Dring & Hongli Hu & Jiangman Lou & Nia Kyritsis & Jeffrey Zurita & Muhammad S. Shamim & Aviva Presser Aiden & Erez Lieberman Aiden & Fr, 2019. "The fundamental role of chromatin loop extrusion in physiological V(D)J recombination," Nature, Nature, vol. 573(7775), pages 600-604, September.
    10. Wibke Schwarzer & Nezar Abdennur & Anton Goloborodko & Aleksandra Pekowska & Geoffrey Fudenberg & Yann Loe-Mie & Nuno A Fonseca & Wolfgang Huber & Christian H. Haering & Leonid Mirny & Francois Spitz, 2017. "Two independent modes of chromatin organization revealed by cohesin removal," Nature, Nature, vol. 551(7678), pages 51-56, November.
    11. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    12. Soohwan Oh & Jiaofang Shao & Joydeep Mitra & Feng Xiong & Matteo D’Antonio & Ruoyu Wang & Ivan Garcia-Bassets & Qi Ma & Xiaoyu Zhu & Joo-Hyung Lee & Sreejith J. Nair & Feng Yang & Kenneth Ohgi & Kelly, 2021. "Enhancer release and retargeting activates disease-susceptibility genes," Nature, Nature, vol. 595(7869), pages 735-740, July.
    13. Haoyue Zhang & Daniel J. Emerson & Thomas G. Gilgenast & Katelyn R. Titus & Yemin Lan & Peng Huang & Di Zhang & Hongxin Wang & Cheryl A. Keller & Belinda Giardine & Ross C. Hardison & Jennifer E. Phil, 2019. "Chromatin structure dynamics during the mitosis-to-G1 phase transition," Nature, Nature, vol. 576(7785), pages 158-162, December.
    14. Qiling Zhou & Miao Yu & Roberto Tirado-Magallanes & Bin Li & Lingshi Kong & Mingrui Guo & Zi Hui Tan & Sanghoon Lee & Li Chai & Akihiko Numata & Touati Benoukraf & Melissa Jane Fullwood & Motomi Osato, 2021. "ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Jingxuan Xu & Xiang Xu & Dandan Huang & Yawen Luo & Lin Lin & Xuemei Bai & Yang Zheng & Qian Yang & Yu Cheng & An Huang & Jingyi Shi & Xiaochen Bo & Jin Gu & Hebing Chen, 2024. "A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Dominic D. G. Owens & Giorgio Anselmi & A. Marieke Oudelaar & Damien J. Downes & Alessandro Cavallo & Joe R. Harman & Ron Schwessinger & Akin Bucakci & Lucas Greder & Sara Ornellas & Danuta Jeziorska , 2022. "Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    12. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    13. Nimrod Rappoport & Elad Chomsky & Takashi Nagano & Charlie Seibert & Yaniv Lubling & Yael Baran & Aviezer Lifshitz & Wing Leung & Zohar Mukamel & Ron Shamir & Peter Fraser & Amos Tanay, 2023. "Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Georgii Pobegalov & Lee-Ya Chu & Jan-Michael Peters & Maxim I. Molodtsov, 2023. "Single cohesin molecules generate force by two distinct mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Abrar Aljahani & Peng Hua & Magdalena A. Karpinska & Kimberly Quililan & James O. J. Davies & A. Marieke Oudelaar, 2022. "Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Sangram Kadam & Kiran Kumari & Vinoth Manivannan & Shuvadip Dutta & Mithun K. Mitra & Ranjith Padinhateeri, 2023. "Predicting scale-dependent chromatin polymer properties from systematic coarse-graining," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34276-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.