IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49169-1.html
   My bibliography  Save this article

Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors

Author

Listed:
  • Aniket Rana

    (Imperial College London)

  • Song Yi Park

    (Imperial College London
    Pukyong National University)

  • Chiara Labanti

    (Imperial College London)

  • Feifei Fang

    (Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu)

  • Sungyoung Yun

    (Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu)

  • Yifan Dong

    (Imperial College London
    National Renewable Energy Laboratory)

  • Emily J. Yang

    (Imperial College London)

  • Davide Nodari

    (Imperial College London)

  • Nicola Gasparini

    (Imperial College London)

  • Jeong–Il Park

    (Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu)

  • Jisoo Shin

    (Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu)

  • Daiki Minami

    (Samsung Electronics Co. Ltd.)

  • Kyung-Bae Park

    (Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu)

  • Ji-Seon Kim

    (Imperial College London)

  • James R. Durrant

    (Imperial College London
    Swansea University)

Abstract

In this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (−80 DÅ2), which generates a 200 meV shift in molecular energetics. Increasing the thickness of chlorinated subphthalocyanine leads to faster response time, correlated with a decrease in trap density. Notably, photodetectors with a 50 nm thick chlorinated subphthalocyanine photoactive layer exhibit detectivities approaching 1013 Jones, with a dark current below 10−7 A cm−2 up to −5 V. Based on these findings, we conclude that high octupole moment molecular semiconductors are promising materials for high-performance organic photodetectors employing single-component photoactive layer.

Suggested Citation

  • Aniket Rana & Song Yi Park & Chiara Labanti & Feifei Fang & Sungyoung Yun & Yifan Dong & Emily J. Yang & Davide Nodari & Nicola Gasparini & Jeong–Il Park & Jisoo Shin & Daiki Minami & Kyung-Bae Park &, 2024. "Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49169-1
    DOI: 10.1038/s41467-024-49169-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49169-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49169-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianquan Zhang & Huei Shuan Tan & Xugang Guo & Antonio Facchetti & He Yan, 2018. "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors," Nature Energy, Nature, vol. 3(9), pages 720-731, September.
    2. Jonas Kublitski & Andreas Hofacker & Bahman K. Boroujeni & Johannes Benduhn & Vasileios C. Nikolis & Christina Kaiser & Donato Spoltore & Hans Kleemann & Axel Fischer & Frank Ellinger & Koen Vandewal , 2021. "Reverse dark current in organic photodetectors and the major role of traps as source of noise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yuang Fu & Tack Ho Lee & Yi-Chun Chin & Richard A. Pacalaj & Chiara Labanti & Song Yi Park & Yifan Dong & Hye Won Cho & Jin Young Kim & Daiki Minami & James R. Durrant & Ji-Seon Kim, 2023. "Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Ture F. Hinrichsen & Christopher C. S. Chan & Chao Ma & David Paleček & Alexander Gillett & Shangshang Chen & Xinhui Zou & Guichuan Zhang & Hin-Lap Yip & Kam Sing Wong & Richard H. Friend & He Yan & A, 2020. "Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Chiara Labanti & Jiaying Wu & Jisoo Shin & Saurav Limbu & Sungyoung Yun & Feifei Fang & Song Yi Park & Chul-Joon Heo & Younhee Lim & Taejin Choi & Hyeong-Ju Kim & Hyerim Hong & Byoungki Choi & Kyung-B, 2022. "Light-intensity-dependent photoresponse time of organic photodetectors and its molecular origin," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Tao Zhang & Dana B. Dement & Vivian E. Ferry & Russell J. Holmes, 2019. "Intrinsic measurements of exciton transport in photovoltaic cells," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Kjell Cnops & Barry P. Rand & David Cheyns & Bregt Verreet & Max A. Empl & Paul Heremans, 2014. "8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    9. Yifan Dong & Vasileios C. Nikolis & Felix Talnack & Yi-Chun Chin & Johannes Benduhn & Giacomo Londi & Jonas Kublitski & Xijia Zheng & Stefan C. B. Mannsfeld & Donato Spoltore & Luca Muccioli & Jing Li, 2020. "Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yuang Fu & Tack Ho Lee & Yi-Chun Chin & Richard A. Pacalaj & Chiara Labanti & Song Yi Park & Yifan Dong & Hye Won Cho & Jin Young Kim & Daiki Minami & James R. Durrant & Ji-Seon Kim, 2023. "Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Chiara Labanti & Jiaying Wu & Jisoo Shin & Saurav Limbu & Sungyoung Yun & Feifei Fang & Song Yi Park & Chul-Joon Heo & Younhee Lim & Taejin Choi & Hyeong-Ju Kim & Hyerim Hong & Byoungki Choi & Kyung-B, 2022. "Light-intensity-dependent photoresponse time of organic photodetectors and its molecular origin," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Caixuan Wang & Xiaoming Ma & Dan Deng & Hao Zhang & Rui Sun & Jianqi Zhang & Lili Zhang & Mengying Wu & Jie Min & Zhi-Guo Zhang & Zhixiang Wei, 2024. "Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Alexander N. Solodukhin & Yuriy N. Luponosov & Artur L. Mannanov & Petr S. Savchenko & Artem V. Bakirov & Maxim A. Shcherbina & Sergei N. Chvalun & Dmitry Yu. Paraschuk & Sergey A. Ponomarenko, 2021. "Branched Electron-Donor Core Effect in D-π-A Star-Shaped Small Molecules on Their Properties and Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells †," Energies, MDPI, vol. 14(12), pages 1-14, June.
    8. Marios Maimaris & Allan J. Pettipher & Mohammed Azzouzi & Daniel J. Walke & Xijia Zheng & Andrei Gorodetsky & Yifan Dong & Pabitra Shakya Tuladhar & Helder Crespo & Jenny Nelson & John W. G. Tisch & A, 2022. "Sub-10-fs observation of bound exciton formation in organic optoelectronic devices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Xiaomin Wu & Changsong Gao & Qizhen Chen & Yujie Yan & Guocheng Zhang & Tailiang Guo & Huipeng Chen, 2023. "High-performance vertical field-effect organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Samuele Giannini & Wei-Tao Peng & Lorenzo Cupellini & Daniele Padula & Antoine Carof & Jochen Blumberger, 2022. "Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Riccardo Ollearo & Junke Wang & Matthew J. Dyson & Christ H. L. Weijtens & Marco Fattori & Bas T. Gorkom & Albert J. J. M. Breemen & Stefan C. J. Meskers & René A. J. Janssen & Gerwin H. Gelinck, 2021. "Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Zirui Gan & Liang Wang & Jinlong Cai & Chuanhang Guo & Chen Chen & Donghui Li & Yiwei Fu & Bojun Zhou & Yuandong Sun & Chenhao Liu & Jing Zhou & Dan Liu & Wei Li & Tao Wang, 2023. "Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Siwei Luo & Chao Li & Jianquan Zhang & Xinhui Zou & Heng Zhao & Kan Ding & Hui Huang & Jiali Song & Jicheng Yi & Han Yu & Kam Sing Wong & Guangye Zhang & Harald Ade & Wei Ma & Huawei Hu & Yanming Sun , 2023. "Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Congqi Li & Guo Yao & Xiaobin Gu & Jikai Lv & Yuqi Hou & Qijie Lin & Na Yu & Misbah Sehar Abbasi & Xin Zhang & Jianqi Zhang & Zheng Tang & Qian Peng & Chunfeng Zhang & Yunhao Cai & Hui Huang, 2024. "Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49169-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.