IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42071-2.html
   My bibliography  Save this article

Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells

Author

Listed:
  • Zirui Gan

    (Wuhan University of Technology)

  • Liang Wang

    (Wuhan University of Technology)

  • Jinlong Cai

    (Wuhan University of Technology)

  • Chuanhang Guo

    (Wuhan University of Technology)

  • Chen Chen

    (Wuhan University of Technology)

  • Donghui Li

    (Wuhan University of Technology)

  • Yiwei Fu

    (Wuhan University of Technology)

  • Bojun Zhou

    (Wuhan University of Technology)

  • Yuandong Sun

    (Wuhan University of Technology)

  • Chenhao Liu

    (Wuhan University of Technology)

  • Jing Zhou

    (Wuhan University of Technology)

  • Dan Liu

    (Wuhan University of Technology)

  • Wei Li

    (Wuhan University of Technology)

  • Tao Wang

    (Wuhan University of Technology
    Wuhan University of Technology)

Abstract

Conjugated polymers are generally featured with low structural order due to their aromatic and irregular structural units, which limits their light absorption and charge mobility in organic solar cells. In this work, we report a conjugated molecule INMB-F that can act as a molecular bridge via electrostatic force to enhance the intermolecular stacking of BDT-based polymer donors toward efficient and stable organic solar cells. Molecular dynamics simulations and synchrotron X-ray measurements reveal that the electronegative INMB-F adsorb on the electropositive main chain of polymer donors to increase the donor-donor interactions, leading to enhanced structural order with shortened π-π stacking distance and consequently enhanced charge transport ability. Casting the non-fullerene acceptor layer on top of the INMB-F modified donor layer to fabricate solar cells via layer-by-layer deposition evidences significant power conversion efficiency boosts in a range of photovoltaic systems. A power conversion efficiency of 19.4% (certified 18.96%) is realized in PM6/L8-BO binary devices, which is one of the highest reported efficiencies of this material system. The enhanced structural order of polymer donors by INMB-F also leads to a six-fold enhancement of the operational stability of PM6/L8-BO organic solar cells.

Suggested Citation

  • Zirui Gan & Liang Wang & Jinlong Cai & Chuanhang Guo & Chen Chen & Donghui Li & Yiwei Fu & Bojun Zhou & Yuandong Sun & Chenhao Liu & Jing Zhou & Dan Liu & Wei Li & Tao Wang, 2023. "Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42071-2
    DOI: 10.1038/s41467-023-42071-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42071-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42071-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kangkang Weng & Linglong Ye & Lei Zhu & Jinqiu Xu & Jiajia Zhou & Xiang Feng & Guanghao Lu & Songting Tan & Feng Liu & Yanming Sun, 2020. "Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Alexander J. Gillett & Alberto Privitera & Rishat Dilmurat & Akchheta Karki & Deping Qian & Anton Pershin & Giacomo Londi & William K. Myers & Jaewon Lee & Jun Yuan & Seo-Jin Ko & Moritz K. Riede & Fe, 2021. "The role of charge recombination to triplet excitons in organic solar cells," Nature, Nature, vol. 597(7878), pages 666-671, September.
    3. Jianquan Zhang & Huei Shuan Tan & Xugang Guo & Antonio Facchetti & He Yan, 2018. "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors," Nature Energy, Nature, vol. 3(9), pages 720-731, September.
    4. Runnan Yu & Huifeng Yao & Ling Hong & Yunpeng Qin & Jie Zhu & Yong Cui & Sunsun Li & Jianhui Hou, 2018. "Design and application of volatilizable solid additives in non-fullerene organic solar cells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Aniket Rana & Song Yi Park & Chiara Labanti & Feifei Fang & Sungyoung Yun & Yifan Dong & Emily J. Yang & Davide Nodari & Nicola Gasparini & Jeong–Il Park & Jisoo Shin & Daiki Minami & Kyung-Bae Park &, 2024. "Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Guilong Cai & Yuhao Li & Yuang Fu & Hua Yang & Le Mei & Zhaoyang Nie & Tengfei Li & Heng Liu & Yubin Ke & Xun-Li Wang & Jean-Luc Brédas & Man-Chung Tang & Xiankai Chen & Xiaowei Zhan & Xinhui Lu, 2024. "Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Hongyuan Fu & Jia Yao & Ming Zhang & Lingwei Xue & Qiuju Zhou & Shangyu Li & Ming Lei & Lei Meng & Zhi-Guo Zhang & Yongfang Li, 2022. "Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Mohamed El Amine Boudia & Qiuwang Wang & Cunlu Zhao, 2024. "Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO 2 as Electron Transport Layers," Energies, MDPI, vol. 17(13), pages 1-14, July.
    13. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Anna Jungbluth & Eunkyung Cho & Alberto Privitera & Kaila M. Yallum & Pascal Kaienburg & Andreas E. Lauritzen & Thomas Derrien & Sameer V. Kesava & Irfan Habib & Saied Md Pratik & Natalie Banerji & Je, 2024. "Limiting factors for charge generation in low-offset fullerene-based organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Xiaomin Wu & Changsong Gao & Qizhen Chen & Yujie Yan & Guocheng Zhang & Tailiang Guo & Huipeng Chen, 2023. "High-performance vertical field-effect organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Boudia Mohamed El Amine & Yi Zhou & Hongying Li & Qiuwang Wang & Jun Xi & Cunlu Zhao, 2023. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency," Energies, MDPI, vol. 16(9), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42071-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.