IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37174-9.html
   My bibliography  Save this article

High-performance vertical field-effect organic photovoltaics

Author

Listed:
  • Xiaomin Wu

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
    Fujian Normal University)

  • Changsong Gao

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

  • Qizhen Chen

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

  • Yujie Yan

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

  • Guocheng Zhang

    (Fuzhou University
    Fujian University of Technology)

  • Tailiang Guo

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

  • Huipeng Chen

    (Fuzhou University
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

Abstract

Limited by the inherent energy loss (Eloss) in carrier transport process, the device efficiency of organic solar cells shows inferior to traditional inorganic photovoltaic devices. Generally, molecular design, morphology optimization and interfacial engineering are usually required to alleviate Eloss. Here, vertical field-effect organic photovoltaic (VFEOPV) by integrating an bulk-heterojunction (BHJ) organic photovoltaic (OPV) with vertical field effect transistor (VFET) is invented, in which VFET generates a large, uneven, internal electric field, eliminating the requirement for driving force to dissociate excitons and prevents non-radiative recombination in OPV. In this way, the performance of solar cell can be well controlled by the gate voltage of VFET and the Eloss of VFEOPVs based on J71: ITIC system is dramatically reduced below 0.2 eV, significantly improving power conversion efficiency (PCE) from 10% to 18% under gate voltage of 0.9 V, which only causes negligible additional power consumption (~10−4mJ/cm2). Besides, the device also exhibits multi-functionality including transistor and phototransistors with excellent photodector performance. This work provides a new and general strategy to improve the OPV performance which is compatible with present optimization methods, and can be applied to improve PCE of other types of solar cells such as Perovskite and inorganic solar cells.

Suggested Citation

  • Xiaomin Wu & Changsong Gao & Qizhen Chen & Yujie Yan & Guocheng Zhang & Tailiang Guo & Huipeng Chen, 2023. "High-performance vertical field-effect organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37174-9
    DOI: 10.1038/s41467-023-37174-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37174-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37174-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianquan Zhang & Huei Shuan Tan & Xugang Guo & Antonio Facchetti & He Yan, 2018. "Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors," Nature Energy, Nature, vol. 3(9), pages 720-731, September.
    2. Ali Nawaz & Leandro Merces & Denise M. Andrade & Davi H. S. Camargo & Carlos C. Bof Bufon, 2020. "Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aniket Rana & Song Yi Park & Chiara Labanti & Feifei Fang & Sungyoung Yun & Yifan Dong & Emily J. Yang & Davide Nodari & Nicola Gasparini & Jeong–Il Park & Jisoo Shin & Daiki Minami & Kyung-Bae Park &, 2024. "Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xin Zhang & Xiaoyin Li & Zhengwang Cheng & Aixi Chen & Pengdong Wang & Xingyue Wang & Xiaoxu Lei & Qi Bian & Shaojian Li & Bingkai Yuan & Jianzhi Gao & Fang-Sen Li & Minghu Pan & Feng Liu, 2024. "Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Zirui Gan & Liang Wang & Jinlong Cai & Chuanhang Guo & Chen Chen & Donghui Li & Yiwei Fu & Bojun Zhou & Yuandong Sun & Chenhao Liu & Jing Zhou & Dan Liu & Wei Li & Tao Wang, 2023. "Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Siwei Luo & Chao Li & Jianquan Zhang & Xinhui Zou & Heng Zhao & Kan Ding & Hui Huang & Jiali Song & Jicheng Yi & Han Yu & Kam Sing Wong & Guangye Zhang & Harald Ade & Wei Ma & Huawei Hu & Yanming Sun , 2023. "Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37174-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.