IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48919-5.html
   My bibliography  Save this article

Programmed multimaterial assembly by synergized 3D printing and freeform laser induction

Author

Listed:
  • Bujingda Zheng

    (University of Missouri)

  • Yunchao Xie

    (University of Missouri)

  • Shichen Xu

    (Rice University)

  • Andrew C. Meng

    (University of Missouri)

  • Shaoyun Wang

    (University of Missouri)

  • Yuchao Wu

    (University of Missouri)

  • Shuhong Yang

    (University of Missouri)

  • Caixia Wan

    (University of Missouri)

  • Guoliang Huang

    (University of Missouri)

  • James M. Tour

    (Rice University
    Rice University
    Rice University)

  • Jian Lin

    (University of Missouri)

Abstract

In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.

Suggested Citation

  • Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48919-5
    DOI: 10.1038/s41467-024-48919-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48919-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48919-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Yue & Xiaohao Sun & Luxia Yu & Mingzhe Li & S. Macrae Montgomery & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mark A. Skylar-Scott & Jochen Mueller & Claas W. Visser & Jennifer A. Lewis, 2019. "Voxelated soft matter via multimaterial multinozzle 3D printing," Nature, Nature, vol. 575(7782), pages 330-335, November.
    3. Ge Li & Donggang Xie & Hai Zhong & Ziye Zhang & Xingke Fu & Qingli Zhou & Qiang Li & Hao Ni & Jiaou Wang & Er-jia Guo & Meng He & Can Wang & Guozhen Yang & Kuijuan Jin & Chen Ge, 2022. "Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Elaheh Sedghamiz & Modan Liu & Wolfgang Wenzel, 2022. "Challenges and limits of mechanical stability in 3D direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jianxiang Cheng & Rong Wang & Zechu Sun & Qingjiang Liu & Xiangnan He & Honggeng Li & Haitao Ye & Xingxin Yang & Xinfeng Wei & Zhenqing Li & Bingcong Jian & Weiwei Deng & Qi Ge, 2022. "Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Heng Deng & Kianoosh Sattari & Yunchao Xie & Ping Liao & Zheng Yan & Jian Lin, 2020. "Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Subramanian Sundaram & Petr Kellnhofer & Yunzhu Li & Jun-Yan Zhu & Antonio Torralba & Wojciech Matusik, 2019. "Learning the signatures of the human grasp using a scalable tactile glove," Nature, Nature, vol. 569(7758), pages 698-702, May.
    9. Faheem Ershad & Anish Thukral & Jiping Yue & Phillip Comeaux & Yuntao Lu & Hyunseok Shim & Kyoseung Sim & Nam-In Kim & Zhoulyu Rao & Ross Guevara & Luis Contreras & Fengjiao Pan & Yongcao Zhang & Ying, 2020. "Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Zewen Lin & Xiaowen Qiu & Zhouqishuo Cai & Jialiang Li & Yanan Zhao & Xinping Lin & Jinmeng Zhang & Xiaolan Hu & Hua Bai, 2024. "High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Caicong Li & Jianxiang Cheng & Yunfeng He & Xiangnan He & Ziyi Xu & Qi Ge & Canhui Yang, 2023. "Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Shixiang Zhou & Yijing Zhao & Kaixi Zhang & Yanran Xun & Xueyu Tao & Wentao Yan & Wei Zhai & Jun Ding, 2024. "Impact-resistant supercapacitor by hydrogel-infused lattice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xiaohao Sun & Liang Yue & Luxia Yu & Connor T. Forte & Connor D. Armstrong & Kun Zhou & Frédéric Demoly & Ruike Renee Zhao & H. Jerry Qi, 2024. "Machine learning-enabled forward prediction and inverse design of 4D-printed active plates," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zhouheng Wang & Nanlin Shi & Yingchao Zhang & Ning Zheng & Haicheng Li & Yang Jiao & Jiahui Cheng & Yutong Wang & Xiaoqing Zhang & Ying Chen & Yihao Chen & Heling Wang & Tao Xie & Yijun Wang & Yinji M, 2023. "Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Amirhossein Hajiaghajani & Patrick Rwei & Amir Hosein Afandizadeh Zargari & Alberto Ranier Escobar & Fadi Kurdahi & Michelle Khine & Peter Tseng, 2023. "Amphibious epidermal area networks for uninterrupted wireless data and power transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Ziheng Chen & Yibin Wang & Hui Chen & Junhui Law & Huayan Pu & Shaorong Xie & Feng Duan & Yu Sun & Na Liu & Jiangfan Yu, 2024. "A magnetic multi-layer soft robot for on-demand targeted adhesion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiangnan He & Biao Zhang & Qingjiang Liu & Hao Chen & Jianxiang Cheng & Bingcong Jian & Hanlin Yin & Honggeng Li & Ke Duan & Jianwei Zhang & Qi Ge, 2024. "Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Sang-Joon Ahn & Howon Lee & Kyu-Jin Cho, 2024. "3D printing with a 3D printed digital material filament for programming functional gradients," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48919-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.