IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48892-z.html
   My bibliography  Save this article

Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics

Author

Listed:
  • Heng Liu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Qinglin Lai

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Jun Fu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Shijie Zhang

    (Yunnan Normal University
    Yunnan Key Laboratory of Opto-Electronic Information Technology)

  • Zhaoming Fu

    (Yunnan Normal University
    Yunnan Key Laboratory of Opto-Electronic Information Technology)

  • Hualing Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.

Suggested Citation

  • Heng Liu & Qinglin Lai & Jun Fu & Shijie Zhang & Zhaoming Fu & Hualing Zeng, 2024. "Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48892-z
    DOI: 10.1038/s41467-024-48892-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48892-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48892-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier Junquera & Philippe Ghosez, 2003. "Critical thickness for ferroelectricity in perovskite ultrathin films," Nature, Nature, vol. 422(6931), pages 506-509, April.
    2. Dong-Dong Xu & Ru-Ru Ma & Ai-Ping Fu & Zhao Guan & Ni Zhong & Hui Peng & Ping-Hua Xiang & Chun-Gang Duan, 2021. "Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Xiaowei Wang & Peng Yu & Zhendong Lei & Chao Zhu & Xun Cao & Fucai Liu & Lu You & Qingsheng Zeng & Ya Deng & Chao Zhu & Jiadong Zhou & Qundong Fu & Junling Wang & Yizhong Huang & Zheng Liu, 2019. "Van der Waals negative capacitance transistors," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Zaiyao Fei & Wenjin Zhao & Tauno A. Palomaki & Bosong Sun & Moira K. Miller & Zhiying Zhao & Jiaqiang Yan & Xiaodong Xu & David H. Cobden, 2018. "Ferroelectric switching of a two-dimensional metal," Nature, Nature, vol. 560(7718), pages 336-339, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Gyuho Myeong & Wongil Shin & Kyunghwan Sung & Seungho Kim & Hongsik Lim & Boram Kim & Taehyeok Jin & Jihoon Park & Taehun Lee & Michael S. Fuhrer & Kenji Watanabe & Takashi Taniguchi & Fei Liu & Sungj, 2022. "Dirac-source diode with sub-unity ideality factor," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Teng Ma & Hao Chen & Kunihiro Yananose & Xin Zhou & Lin Wang & Runlai Li & Ziyu Zhu & Zhenyue Wu & Qing-Hua Xu & Jaejun Yu & Cheng Wei Qiu & Alessandro Stroppa & Kian Ping Loh, 2022. "Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Ming Lv & Jiulong Wang & Ming Tian & Neng Wan & Wenyi Tong & Chungang Duan & Jiamin Xue, 2024. "Multiresistance states in ferro- and antiferroelectric trilayer boron nitride," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Yunze Gao & Astrid Weston & Vladimir Enaldiev & Xiao Li & Wendong Wang & James E. Nunn & Isaac Soltero & Eli G. Castanon & Amy Carl & Hugo Latour & Alex Summerfield & Matthew Hamer & James Howarth & N, 2024. "Tunnel junctions based on interfacial two dimensional ferroelectrics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Ruirui Niu & Zhuoxian Li & Xiangyan Han & Zhuangzhuang Qu & Dongdong Ding & Zhiyu Wang & Qianling Liu & Tianyao Liu & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Menghao Wu & Qi Ren & Xueyun Wa, 2022. "Giant ferroelectric polarization in a bilayer graphene heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Xiaodong Yao & Yinxin Bai & Cheng Jin & Xinyu Zhang & Qunfei Zheng & Zedong Xu & Lang Chen & Shanmin Wang & Ying Liu & Junling Wang & Jinlong Zhu, 2023. "Anomalous polarization enhancement in a van der Waals ferroelectric material under pressure," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    14. Tao Li & Yongyi Wu & Guoliang Yu & Shengxian Li & Yifeng Ren & Yadong Liu & Jiarui Liu & Hao Feng & Yu Deng & Mingxing Chen & Zhenyu Zhang & Tai Min, 2024. "Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. James L. Hart & Lopa Bhatt & Yanbing Zhu & Myung-Geun Han & Elisabeth Bianco & Shunran Li & David J. Hynek & John A. Schneeloch & Yu Tao & Despina Louca & Peijun Guo & Yimei Zhu & Felipe Jornada & Eva, 2023. "Emergent layer stacking arrangements in c-axis confined MoTe2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Meizhuang Liu & Jian Gou & Zizhao Liu & Zuxin Chen & Yuliang Ye & Jing Xu & Xiaozhi Xu & Dingyong Zhong & Goki Eda & Andrew T. S. Wee, 2024. "Phase-selective in-plane heteroepitaxial growth of H-phase CrSe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48892-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.