IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48890-1.html
   My bibliography  Save this article

Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry

Author

Listed:
  • Tianwei Cui

    (Zhengzhou University)

  • Jialiang Xu

    (Shanghai Jiao Tong University)

  • Xin Wang

    (Zhengzhou University)

  • Longxiang Liu

    (University of Oxford)

  • Yuxuan Xiang

    (Westlake University
    Westlake University)

  • Hong Zhu

    (Shanghai Jiao Tong University)

  • Xiang Li

    (Zhengzhou University)

  • Yongzhu Fu

    (Zhengzhou University)

Abstract

The further practical applications of Li-rich layered oxides are impeded by voltage decay and redox asymmetry, which are closely related to the structural degradation involving irreversible transition metal migration. It has been demonstrated that the superstructure ordering in O2-type materials can effectively suppress voltage decay and redox asymmetry. Herein, we elucidate that the absence of this superstructure ordering arrangement in a Ru-based O2-type oxide can still facilitate the highly reversible transition metal migration. We certify that Ru in superstructure-free O2-type structure can unlock a quite different migration path from Mn in mostly studied cases. The highly reversible migration of Ru helps the cathode maintain the structural robustness, thus realizing terrific capacity retention with neglectable voltage decay and inhibited oxygen redox asymmetry. We untie the knot that the absence of superstructure ordering fails to enable a high-performance Li-rich layered oxide cathode material with suppressed voltage decay and redox asymmetry.

Suggested Citation

  • Tianwei Cui & Jialiang Xu & Xin Wang & Longxiang Liu & Yuxuan Xiang & Hong Zhu & Xiang Li & Yongzhu Fu, 2024. "Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48890-1
    DOI: 10.1038/s41467-024-48890-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48890-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48890-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Xu & Meiling Sun & Ruimin Qiao & Sara E. Renfrew & Lu Ma & Tianpin Wu & Sooyeon Hwang & Dennis Nordlund & Dong Su & Khalil Amine & Jun Lu & Bryan D. McCloskey & Wanli Yang & Wei Tong, 2018. "Elucidating anionic oxygen activity in lithium-rich layered oxides," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Ning Li & Meiling Sun & Wang Hay Kan & Zengqing Zhuo & Sooyeon Hwang & Sara E. Renfrew & Maxim Avdeev & Ashfia Huq & Bryan D. McCloskey & Dong Su & Wanli Yang & Wei Tong, 2021. "Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Robert A. House & Gregory J. Rees & Kit McColl & John-Joseph Marie & Mirian Garcia-Fernandez & Abhishek Nag & Ke-Jin Zhou & Simon Cassidy & Benjamin J. Morgan & M. Saiful Islam & Peter G. Bruce, 2023. "Delocalized electron holes on oxygen in a battery cathode," Nature Energy, Nature, vol. 8(4), pages 351-360, April.
    4. Dong Luo & He Zhu & Yi Xia & Zijia Yin & Yan Qin & Tianyi Li & Qinghua Zhang & Lin Gu & Yong Peng & Junwei Zhang & Kamila M. Wiaderek & Yalan Huang & Tingting Yang & Yu Tang & Si Lan & Yang Ren & Wenq, 2023. "A Li-rich layered oxide cathode with negligible voltage decay," Nature Energy, Nature, vol. 8(10), pages 1078-1087, October.
    5. Gaurav Assat & Dominique Foix & Charles Delacourt & Antonella Iadecola & Rémi Dedryvère & Jean-Marie Tarascon, 2017. "Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    6. Tongchao Liu & Jiajie Liu & Luxi Li & Lei Yu & Jiecheng Diao & Tao Zhou & Shunning Li & Alvin Dai & Wenguang Zhao & Shenyang Xu & Yang Ren & Liguang Wang & Tianpin Wu & Rui Qi & Yinguo Xiao & Jiaxin Z, 2022. "Origin of structural degradation in Li-rich layered oxide cathode," Nature, Nature, vol. 606(7913), pages 305-312, June.
    7. Gaurav Assat & Jean-Marie Tarascon, 2018. "Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries," Nature Energy, Nature, vol. 3(5), pages 373-386, May.
    8. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Robert A. House & John-Joseph Marie & Joohyuk Park & Gregory J. Rees & Stefano Agrestini & Abhishek Nag & Mirian Garcia-Fernandez & Ke-Jin Zhou & Peter G. Bruce, 2021. "Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Fanghua Ning & Biao Li & Jin Song & Yuxuan Zuo & Huaifang Shang & Zimeng Zhao & Zhen Yu & Wangsheng Chu & Kun Zhang & Guang Feng & Xiayan Wang & Dingguo Xia, 2020. "Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    11. Qing Chen & Yi Pei & Houwen Chen & Yan Song & Liang Zhen & Cheng-Yan Xu & Penghao Xiao & Graeme Henkelman, 2020. "Highly reversible oxygen redox in layered compounds enabled by surface polyanions," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kit McColl & Robert A. House & Gregory J. Rees & Alexander G. Squires & Samuel W. Coles & Peter G. Bruce & Benjamin J. Morgan & M. Saiful Islam, 2022. "Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Qingyuan Li & De Ning & Deniz Wong & Ke An & Yuxin Tang & Dong Zhou & Götz Schuck & Zhenhua Chen & Nian Zhang & Xiangfeng Liu, 2022. "Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Zijian Cai & Bin Ouyang & Han-Ming Hau & Tina Chen & Raynald Giovine & Krishna Prasad Koirala & Linze Li & Huiwen Ji & Yang Ha & Yingzhi Sun & Jianping Huang & Yu Chen & Vincent Wu & Wanli Yang & Chon, 2024. "In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials," Nature Energy, Nature, vol. 9(1), pages 27-36, January.
    7. Ke Chen & Pallab Barai & Ozgenur Kahvecioglu & Lijun Wu & Krzysztof Z. Pupek & Mingyuan Ge & Lu Ma & Steven N. Ehrlich & Hui Zhong & Yimei Zhu & Venkat Srinivasan & Jianming Bai & Feng Wang, 2024. "Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Hongnan Jia & Na Yao & Yiming Jin & Liqing Wu & Juan Zhu & Wei Luo, 2024. "Stabilizing atomic Ru species in conjugated sp2 carbon-linked covalent organic framework for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Xuelong Wang & Liang Yin & Arthur Ronne & Yiman Zhang & Zilin Hu & Sha Tan & Qinchao Wang & Bohang Song & Mengya Li & Xiaohui Rong & Saul Lapidus & Shize Yang & Enyuan Hu & Jue Liu, 2023. "Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Dong Hou & Zhengrui Xu & Zhijie Yang & Chunguang Kuai & Zhijia Du & Cheng-Jun Sun & Yang Ren & Jue Liu & Xianghui Xiao & Feng Lin, 2022. "Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    14. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Sulay Saha & Prashant Kumar Gupta & Raj Ganesh S. Pala, 2021. "Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    16. Shuo Sun & Zhen Han & Wei Liu & Qiuying Xia & Liang Xue & Xincheng Lei & Teng Zhai & Dong Su & Hui Xia, 2023. "Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Shunsuke Sasaki & Souvik Giri & Simon J. Cassidy & Sunita Dey & Maria Batuk & Daphne Vandemeulebroucke & Giannantonio Cibin & Ronald I. Smith & Philip Holdship & Clare P. Grey & Joke Hadermann & Simon, 2023. "Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.
    20. Fangqing Wang & Peichao Zou & Yangyang Zhang & Wenli Pan & Ying Li & Limin Liang & Cong Chen & Hui Liu & Shijian Zheng, 2023. "Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48890-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.