IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57378-5.html
   My bibliography  Save this article

Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering

Author

Listed:
  • Meng Li

    (GRINM (Guangdong) Research Institute for Advanced Materials and Technology
    University of Science and Technology Beijing)

  • Haoxiang Zhuo

    (China Automotive Battery Research Institute Co., Ltd.)

  • Jiuwei Lei

    (Eastern Institute of Technology)

  • Yaqing Guo

    (Wenzhou University)

  • Yifei Yuan

    (Wenzhou University)

  • Kuan Wang

    (GRINM (Guangdong) Research Institute for Advanced Materials and Technology)

  • Zhou Liao

    (GRINM (Guangdong) Research Institute for Advanced Materials and Technology
    Eastern Institute of Technology)

  • Wei Xia

    (Eastern Institute of Technology)

  • Dongsheng Geng

    (University of Science and Technology Beijing
    Nanjing University of Information Science & Technology)

  • Xueliang Sun

    (Eastern Institute of Technology)

  • Jiangtao Hu

    (Shenzhen University)

  • Biwei Xiao

    (GRINM (Guangdong) Research Institute for Advanced Materials and Technology
    China Automotive Battery Research Institute Co., Ltd.
    General Research Institute for Nonferrous Metals)

Abstract

The O3-type layered oxide represents a highly promising candidate for sodium-ion batteries (SIBs). However, the intrinsic stability law of these cathodes remains elusive due to the complex phase transition mechanism and migration of transition metal (TM) ions. Here, we underscore how the ratio between the spacings of alkali metal layer and TM layer (R = dO-Na-O/dO-TM-O) plays a critical role in determining the structural stability and the corresponding electrochemical performance. We design a peculiar family of NaxMn0.4Ni0.3Fe0.15Li0.1Ti0.05O2 (0.55 ≤ x ≤ 1) composition that is thermodynamically stable as an O3-type structure even when R is as high as 1.969, far exceeding 1.62 that normal O3-type structures can reach at most. The high R-value puts the O3 cathode in the preparatory stage for the O3-P3 phase transition, resulting in a rapid yet smooth phase transition process. It also induces a significantly stretched interstitial tetrahedral structure to the Na layer, thus effectively impeding TM migration. Leveraging this mechanism, we reexamine the underlying cause for enhanced stability in P2/O3 hybrid structure. Besides the conventional wisdom of an interlocking effect, the high R-value nature of its O3 sub-phase also plays a pivotal role.

Suggested Citation

  • Meng Li & Haoxiang Zhuo & Jiuwei Lei & Yaqing Guo & Yifei Yuan & Kuan Wang & Zhou Liao & Wei Xia & Dongsheng Geng & Xueliang Sun & Jiangtao Hu & Biwei Xiao, 2025. "Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57378-5
    DOI: 10.1038/s41467-025-57378-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57378-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57378-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yonglin Tang & Qinghua Zhang & Wenhua Zuo & Shiyuan Zhou & Guifan Zeng & Baodan Zhang & Haitang Zhang & Zhongyuan Huang & Lirong Zheng & Juping Xu & Wen Yin & Yongfu Qiu & Yinguo Xiao & Qiaobao Zhang , 2024. "Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries," Nature Sustainability, Nature, vol. 7(3), pages 348-359, March.
    2. Dong Luo & He Zhu & Yi Xia & Zijia Yin & Yan Qin & Tianyi Li & Qinghua Zhang & Lin Gu & Yong Peng & Junwei Zhang & Kamila M. Wiaderek & Yalan Huang & Tingting Yang & Yu Tang & Si Lan & Yang Ren & Wenq, 2023. "A Li-rich layered oxide cathode with negligible voltage decay," Nature Energy, Nature, vol. 8(10), pages 1078-1087, October.
    3. Jang-Yeon Hwang & Seung-Min Oh & Seung-Taek Myung & Kyung Yoon Chung & Ilias Belharouak & Yang-Kook Sun, 2015. "Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Wenhua Zuo & Xiangsi Liu & Jimin Qiu & Dexin Zhang & Zhumei Xiao & Jisheng Xie & Fucheng Ren & Jinming Wang & Yixiao Li & Gregorio F. Ortiz & Wen Wen & Shunqing Wu & Ming-Sheng Wang & Riqiang Fu & Yon, 2021. "Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Tianwei Cui & Jialiang Xu & Xin Wang & Longxiang Liu & Yuxuan Xiang & Hong Zhu & Xiang Li & Yongzhu Fu, 2024. "Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    5. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Hao Liu & Weibo Hua & Sylvia Kunz & Matteo Bianchini & Hang Li & Jiali Peng & Jing Lin & Oleksandr Dolotko & Thomas Bergfeldt & Kai Wang & Christian Kübel & Peter Nagel & Stefan Schuppler & Michael Me, 2024. "Tailoring superstructure units for improved oxygen redox activity in Li-rich layered oxide battery’s positive electrodes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.
    9. Minghao Zhang & Chenxi Sun & Guanhong Chen & Yuanhong Kang & Zeheng Lv & Jin Yang & Siyang Li & Pengxiang Lin & Rong Tang & Zhipeng Wen & Cheng Chao Li & Jinbao Zhao & Yang Yang, 2024. "Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57378-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.