IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48848-3.html
   My bibliography  Save this article

Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses

Author

Listed:
  • Lu Xue

    (Chinese Academy of Sciences)

  • Tiancai Chang

    (Chinese Academy of Sciences)

  • Zimu Li

    (Chinese Academy of Sciences
    Guangzhou National Laboratory)

  • Chenchen Wang

    (Southern University of Science and Technology)

  • Heyu Zhao

    (Chinese Academy of Sciences)

  • Mei Li

    (Guangzhou National Laboratory)

  • Peng Tang

    (Chinese Academy of Sciences)

  • Xin Wen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Mengmeng Yu

    (Chinese Academy of Agricultural Sciences)

  • Jiqin Wu

    (Chinese Academy of Sciences)

  • Xichen Bao

    (Chinese Academy of Sciences)

  • Xiaojun Wang

    (Chinese Academy of Agricultural Sciences)

  • Peng Gong

    (Chinese Academy of Sciences)

  • Jun He

    (Chinese Academy of Sciences)

  • Xinwen Chen

    (Guangzhou National Laboratory
    Chinese Academy of Sciences)

  • Xiaoli Xiong

    (Chinese Academy of Sciences)

Abstract

Influenza viruses and thogotoviruses account for most recognized orthomyxoviruses. Thogotoviruses, exemplified by Thogoto virus (THOV), are capable of infecting humans using ticks as vectors. THOV transcribes mRNA without the extraneous 5′ end sequences derived from cap-snatching in influenza virus mRNA. Here, we report cryo-EM structures to characterize THOV polymerase RNA synthesis initiation and elongation. The structures demonstrate that THOV RNA transcription and replication are able to start with short dinucleotide primers and that the polymerase cap-snatching machinery is likely non-functional. Triggered by RNA synthesis, asymmetric THOV polymerase dimers can form without the involvement of host factors. We confirm that, distinctive from influenza viruses, THOV-polymerase RNA synthesis is weakly dependent of the host factors ANP32A/B/E in human cells. This study demonstrates varied mechanisms in RNA synthesis and host factor utilization among orthomyxoviruses, providing insights into the mechanisms behind thogotoviruses’ broad-infectivity range.

Suggested Citation

  • Lu Xue & Tiancai Chang & Zimu Li & Chenchen Wang & Heyu Zhao & Mei Li & Peng Tang & Xin Wen & Mengmeng Yu & Jiqin Wu & Xichen Bao & Xiaojun Wang & Peng Gong & Jun He & Xinwen Chen & Xiaoli Xiong, 2024. "Cryo-EM structures of Thogoto virus polymerase reveal unique RNA transcription and replication mechanisms among orthomyxoviruses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48848-3
    DOI: 10.1038/s41467-024-48848-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48848-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48848-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason S. Long & Efstathios S. Giotis & Olivier Moncorgé & Rebecca Frise & Bhakti Mistry & Joe James & Mireille Morisson & Munir Iqbal & Alain Vignal & Michael A. Skinner & Wendy S. Barclay, 2016. "Species difference in ANP32A underlies influenza A virus polymerase host restriction," Nature, Nature, vol. 529(7584), pages 101-104, January.
    2. Loïc Carrique & Haitian Fan & Alexander P. Walker & Jeremy R. Keown & Jane Sharps & Ecco Staller & Wendy S. Barclay & Ervin Fodor & Jonathan M. Grimes, 2020. "Host ANP32A mediates the assembly of the influenza virus replicase," Nature, Nature, vol. 587(7835), pages 638-643, November.
    3. Tristan Bepler & Kotaro Kelley & Alex J. Noble & Bonnie Berger, 2020. "Topaz-Denoise: general deep denoising models for cryoEM and cryoET," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Lourdes Lledó & Consuelo Giménez-Pardo & María Isabel Gegúndez, 2020. "Epidemiological Study of Thogoto and Dhori Virus Infection in People Bitten by Ticks, and in Sheep, in an Area of Northern Spain," IJERPH, MDPI, vol. 17(7), pages 1-8, March.
    5. Haitian Fan & Alexander P. Walker & Loïc Carrique & Jeremy R. Keown & Itziar Serna Martin & Dimple Karia & Jane Sharps & Narin Hengrung & Els Pardon & Jan Steyaert & Jonathan M. Grimes & Ervin Fodor, 2019. "Structures of influenza A virus RNA polymerase offer insight into viral genome replication," Nature, Nature, vol. 573(7773), pages 287-290, September.
    6. Julia Peukes & Xiaoli Xiong & Simon Erlendsson & Kun Qu & William Wan & Leslie J. Calder & Oliver Schraidt & Susann Kummer & Stefan M. V. Freund & Hans-Georg Kräusslich & John A. G. Briggs, 2020. "The native structure of the assembled matrix protein 1 of influenza A virus," Nature, Nature, vol. 587(7834), pages 495-498, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Xie & Mohamed Ouizougun-Oubari & Li Wang & Guanglei Zhai & Daitze Wu & Zhaohu Lin & Manfu Wang & Barbara Ludeke & Xiaodong Yan & Tobias Nilsson & Lu Gao & Xinyi Huang & Rachel Fearns & Shuai Chen, 2024. "Structural basis for dimerization of a paramyxovirus polymerase complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Xinyu Zhang & Tianfang Zhao & Jiansheng Chen & Yuan Shen & Xueming Li, 2022. "EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Simon Wiedemann & Reinhard Heckel, 2024. "A deep learning method for simultaneous denoising and missing wedge reconstruction in cryogenic electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Qiansheng Liang & Gamma Chi & Leonardo Cirqueira & Lianteng Zhi & Agostino Marasco & Nadia Pilati & Martin J. Gunthorpe & Giuseppe Alvaro & Charles H. Large & David B. Sauer & Werner Treptow & Manuel , 2024. "The binding and mechanism of a positive allosteric modulator of Kv3 channels," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Kang Zhou & Zhu Si & Peng Ge & Jun Tsao & Ming Luo & Z. Hong Zhou, 2022. "Atomic model of vesicular stomatitis virus and mechanism of assembly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Bryan S. Sibert & Joseph Y. Kim & Jie E. Yang & Zunlong Ke & Christopher C. Stobart & Martin L. Moore & Elizabeth R. Wright, 2024. "Assembly of respiratory syncytial virus matrix protein lattice and its coordination with fusion glycoprotein trimers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Alewo Idoko-Akoh & Daniel H. Goldhill & Carol M. Sheppard & Dagmara Bialy & Jessica L. Quantrill & Ksenia Sukhova & Jonathan C. Brown & Samuel Richardson & Ciara Campbell & Lorna Taylor & Adrian Sherm, 2023. "Creating resistance to avian influenza infection through genome editing of the ANP32 gene family," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yaejin Yun & Hyeongseop Jeong & Thibaut Laboute & Kirill A. Martemyanov & Hyung Ho Lee, 2024. "Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Hui Yang & Yurui Dong & Ying Bian & Nuo Xu & Yuwei Wu & Fan Yang & Yinping Du & Tao Qin & Sujuan Chen & Daxin Peng & Xiufan Liu, 2022. "The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Jianping Li & Yan Li & Akiko Koide & Huihui Kuang & Victor J. Torres & Shohei Koide & Da-Neng Wang & Nathaniel J. Traaseth, 2024. "Proton-coupled transport mechanism of the efflux pump NorA," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Leishu Lin & Jiayuan Dong & Shun Xu & Jinman Xiao & Cong Yu & Fengfeng Niu & Zhiyi Wei, 2024. "Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Felix J. Metzner & Simon J. Wenzl & Michael Kugler & Stefan Krebs & Karl-Peter Hopfner & Katja Lammens, 2022. "Mechanistic understanding of human SLFN11," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Carol M. Sheppard & Daniel H. Goldhill & Olivia C. Swann & Ecco Staller & Rebecca Penn & Olivia K. Platt & Ksenia Sukhova & Laury Baillon & Rebecca Frise & Thomas P. Peacock & Ervin Fodor & Wendy S. B, 2023. "An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Fengfeng Niu & Lingxuan Li & Lei Wang & Jinman Xiao & Shun Xu & Yong Liu & Leishu Lin & Cong Yu & Zhiyi Wei, 2024. "Autoinhibition and activation of myosin VI revealed by its cryo-EM structure," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48848-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.