IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7773d10.1038_s41586-019-1530-7.html
   My bibliography  Save this article

Structures of influenza A virus RNA polymerase offer insight into viral genome replication

Author

Listed:
  • Haitian Fan

    (University of Oxford)

  • Alexander P. Walker

    (University of Oxford)

  • Loïc Carrique

    (University of Oxford)

  • Jeremy R. Keown

    (University of Oxford)

  • Itziar Serna Martin

    (University of Oxford
    University of Oxford
    Utrecht University)

  • Dimple Karia

    (University of Oxford)

  • Jane Sharps

    (University of Oxford)

  • Narin Hengrung

    (University of Oxford
    University of Oxford
    Francis Crick Institute)

  • Els Pardon

    (VIB–VUB Center for Structural Biology, VIB)

  • Jan Steyaert

    (Vrije Universiteit Brussel)

  • Jonathan M. Grimes

    (University of Oxford
    Diamond Light Source)

  • Ervin Fodor

    (University of Oxford)

Abstract

Influenza A viruses are responsible for seasonal epidemics, and pandemics can arise from the transmission of novel zoonotic influenza A viruses to humans1,2. Influenza A viruses contain a segmented negative-sense RNA genome, which is transcribed and replicated by the viral-RNA-dependent RNA polymerase (FluPolA) composed of PB1, PB2 and PA subunits3–5. Although the high-resolution crystal structure of FluPolA of bat influenza A virus has previously been reported6, there are no complete structures available for human and avian FluPolA. Furthermore, the molecular mechanisms of genomic viral RNA (vRNA) replication—which proceeds through a complementary RNA (cRNA) replicative intermediate, and requires oligomerization of the polymerase7–10—remain largely unknown. Here, using crystallography and cryo-electron microscopy, we determine the structures of FluPolA from human influenza A/NT/60/1968 (H3N2) and avian influenza A/duck/Fujian/01/2002 (H5N1) viruses at a resolution of 3.0–4.3 Å, in the presence or absence of a cRNA or vRNA template. In solution, FluPolA forms dimers of heterotrimers through the C-terminal domain of the PA subunit, the thumb subdomain of PB1 and the N1 subdomain of PB2. The cryo-electron microscopy structure of monomeric FluPolA bound to the cRNA template reveals a binding site for the 3′ cRNA at the dimer interface. We use a combination of cell-based and in vitro assays to show that the interface of the FluPolA dimer is required for vRNA synthesis during replication of the viral genome. We also show that a nanobody (a single-domain antibody) that interferes with FluPolA dimerization inhibits the synthesis of vRNA and, consequently, inhibits virus replication in infected cells. Our study provides high-resolution structures of medically relevant FluPolA, as well as insights into the replication mechanisms of the viral RNA genome. In addition, our work identifies sites in FluPolA that could be targeted in the development of antiviral drugs.

Suggested Citation

  • Haitian Fan & Alexander P. Walker & Loïc Carrique & Jeremy R. Keown & Itziar Serna Martin & Dimple Karia & Jane Sharps & Narin Hengrung & Els Pardon & Jan Steyaert & Jonathan M. Grimes & Ervin Fodor, 2019. "Structures of influenza A virus RNA polymerase offer insight into viral genome replication," Nature, Nature, vol. 573(7773), pages 287-290, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7773:d:10.1038_s41586-019-1530-7
    DOI: 10.1038/s41586-019-1530-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1530-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1530-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alewo Idoko-Akoh & Daniel H. Goldhill & Carol M. Sheppard & Dagmara Bialy & Jessica L. Quantrill & Ksenia Sukhova & Jonathan C. Brown & Samuel Richardson & Ciara Campbell & Lorna Taylor & Adrian Sherm, 2023. "Creating resistance to avian influenza infection through genome editing of the ANP32 gene family," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Ecco Staller & Loïc Carrique & Olivia C. Swann & Haitian Fan & Jeremy R. Keown & Carol M. Sheppard & Wendy S. Barclay & Jonathan M. Grimes & Ervin Fodor, 2024. "Structures of H5N1 influenza polymerase with ANP32B reveal mechanisms of genome replication and host adaptation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Carol M. Sheppard & Daniel H. Goldhill & Olivia C. Swann & Ecco Staller & Rebecca Penn & Olivia K. Platt & Ksenia Sukhova & Laury Baillon & Rebecca Frise & Thomas P. Peacock & Ervin Fodor & Wendy S. B, 2023. "An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Jin Xie & Mohamed Ouizougun-Oubari & Li Wang & Guanglei Zhai & Daitze Wu & Zhaohu Lin & Manfu Wang & Barbara Ludeke & Xiaodong Yan & Tobias Nilsson & Lu Gao & Xinyi Huang & Rachel Fearns & Shuai Chen, 2024. "Structural basis for dimerization of a paramyxovirus polymerase complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Tomas Kouba & Dominik Vogel & Sigurdur R. Thorkelsson & Emmanuelle R. J. Quemin & Harry M. Williams & Morlin Milewski & Carola Busch & Stephan Günther & Kay Grünewald & Maria Rosenthal & Stephen Cusac, 2021. "Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Tim Krischuns & Benoît Arragain & Catherine Isel & Sylvain Paisant & Matthias Budt & Thorsten Wolff & Stephen Cusack & Nadia Naffakh, 2024. "The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7773:d:10.1038_s41586-019-1530-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.