IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47470-7.html
   My bibliography  Save this article

Structural basis for dimerization of a paramyxovirus polymerase complex

Author

Listed:
  • Jin Xie

    (Lead Discovery, Roche Innovation Center Shanghai)

  • Mohamed Ouizougun-Oubari

    (Boston University Chobanian & Avedisian School of Medicine)

  • Li Wang

    (Infectious Diseases, Roche Innovation Center Shanghai)

  • Guanglei Zhai

    (Lead Discovery, Roche Innovation Center Shanghai)

  • Daitze Wu

    (Infectious Diseases, Roche Innovation Center Shanghai)

  • Zhaohu Lin

    (Lead Discovery, Roche Innovation Center Shanghai)

  • Manfu Wang

    (Wuxi Biortus Biosciences Co. Ltd.)

  • Barbara Ludeke

    (Boston University Chobanian & Avedisian School of Medicine)

  • Xiaodong Yan

    (Wuxi Biortus Biosciences Co. Ltd.)

  • Tobias Nilsson

    (Infectious Diseases, Roche Innovation Center Basel)

  • Lu Gao

    (Infectious Diseases, Roche Innovation Center Shanghai)

  • Xinyi Huang

    (Lead Discovery, Roche Innovation Center Shanghai)

  • Rachel Fearns

    (Boston University Chobanian & Avedisian School of Medicine)

  • Shuai Chen

    (Lead Discovery, Roche Innovation Center Shanghai)

Abstract

The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L–P complex with the connector domain (CD′) of a second L built, while reconstruction of the rest of the second L–P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique β-strand latch. Furthermore, we report the structural basis of L–L dimerization, with CD′ located at the putative template entry of the adjoining L. Disruption of the L–L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.

Suggested Citation

  • Jin Xie & Mohamed Ouizougun-Oubari & Li Wang & Guanglei Zhai & Daitze Wu & Zhaohu Lin & Manfu Wang & Barbara Ludeke & Xiaodong Yan & Tobias Nilsson & Lu Gao & Xinyi Huang & Rachel Fearns & Shuai Chen, 2024. "Structural basis for dimerization of a paramyxovirus polymerase complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47470-7
    DOI: 10.1038/s41467-024-47470-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47470-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47470-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingyuan Cong & Xiaoying Feng & Huiling Kang & Wangjun Fu & Lei Wang & Chenlong Wang & Xuemei Li & Yutao Chen & Zihe Rao, 2023. "Structure of the Newcastle Disease Virus L protein in complex with tetrameric phosphoprotein," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Benoît Arragain & Grégory Effantin & Piotr Gerlach & Juan Reguera & Guy Schoehn & Stephen Cusack & Hélène Malet, 2020. "Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Bin Yuan & Qi Peng & Jinlong Cheng & Min Wang & Jin Zhong & Jianxun Qi & George F. Gao & Yi Shi, 2022. "Structure of the Ebola virus polymerase complex," Nature, Nature, vol. 610(7931), pages 394-401, October.
    4. Dongdong Cao & Yunrong Gao & Claire Roesler & Samantha Rice & Paul D’Cunha & Lisa Zhuang & Julia Slack & Mason Domke & Anna Antonova & Sarah Romanelli & Shayon Keating & Gabriela Forero & Puneet Junej, 2020. "Cryo-EM structure of the respiratory syncytial virus RNA polymerase," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Loïc Carrique & Haitian Fan & Alexander P. Walker & Jeremy R. Keown & Jane Sharps & Ecco Staller & Wendy S. Barclay & Ervin Fodor & Jonathan M. Grimes, 2020. "Host ANP32A mediates the assembly of the influenza virus replicase," Nature, Nature, vol. 587(7835), pages 638-643, November.
    6. Dongdong Cao & Yunrong Gao & Zhenhang Chen & Inesh Gooneratne & Claire Roesler & Cristopher Mera & Paul D’Cunha & Anna Antonova & Deepak Katta & Sarah Romanelli & Qi Wang & Samantha Rice & Wesley Lemo, 2024. "Structures of the promoter-bound respiratory syncytial virus polymerase," Nature, Nature, vol. 625(7995), pages 611-617, January.
    7. Haitian Fan & Alexander P. Walker & Loïc Carrique & Jeremy R. Keown & Itziar Serna Martin & Dimple Karia & Jane Sharps & Narin Hengrung & Els Pardon & Jan Steyaert & Jonathan M. Grimes & Ervin Fodor, 2019. "Structures of influenza A virus RNA polymerase offer insight into viral genome replication," Nature, Nature, vol. 573(7773), pages 287-290, September.
    8. Qi Peng & Bin Yuan & Jinlong Cheng & Min Wang & Siwei Gao & Suran Bai & Xuejin Zhao & Jianxun Qi & George F. Gao & Yi Shi, 2023. "Molecular mechanism of de novo replication by the Ebola virus polymerase," Nature, Nature, vol. 622(7983), pages 603-610, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Kouba & Dominik Vogel & Sigurdur R. Thorkelsson & Emmanuelle R. J. Quemin & Harry M. Williams & Morlin Milewski & Carola Busch & Stephan Günther & Kay Grünewald & Maria Rosenthal & Stephen Cusac, 2021. "Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Benoît Arragain & Quentin Durieux Trouilleton & Florence Baudin & Jan Provaznik & Nayara Azevedo & Stephen Cusack & Guy Schoehn & Hélène Malet, 2022. "Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Jun Ma & Shuangyue Zhang & Xinzheng Zhang, 2021. "Structure of Machupo virus polymerase in complex with matrix protein Z," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Alewo Idoko-Akoh & Daniel H. Goldhill & Carol M. Sheppard & Dagmara Bialy & Jessica L. Quantrill & Ksenia Sukhova & Jonathan C. Brown & Samuel Richardson & Ciara Campbell & Lorna Taylor & Adrian Sherm, 2023. "Creating resistance to avian influenza infection through genome editing of the ANP32 gene family," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Hui Yang & Yurui Dong & Ying Bian & Nuo Xu & Yuwei Wu & Fan Yang & Yinping Du & Tao Qin & Sujuan Chen & Daxin Peng & Xiufan Liu, 2022. "The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Quentin Durieux Trouilleton & Sergio Barata-García & Benoît Arragain & Juan Reguera & Hélène Malet, 2023. "Structures of active Hantaan virus polymerase uncover the mechanisms of Hantaviridae genome replication," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Carol M. Sheppard & Daniel H. Goldhill & Olivia C. Swann & Ecco Staller & Rebecca Penn & Olivia K. Platt & Ksenia Sukhova & Laury Baillon & Rebecca Frise & Thomas P. Peacock & Ervin Fodor & Wendy S. B, 2023. "An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Quentin Durieux Trouilleton & Dominique Housset & Paco Tarillon & Benoît Arragain & Hélène Malet, 2024. "Structural characterization of the oligomerization of full-length Hantaan virus polymerase into symmetric dimers and hexamers," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Jack D. Whitehead & Hortense Decool & Cédric Leyrat & Loic Carrique & Jenna Fix & Jean-François Eléouët & Marie Galloux & Max Renner, 2023. "Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Benoit Arragain & Martin Pelosse & Albert Thompson & Stephen Cusack, 2023. "Structural and functional analysis of the minimal orthomyxovirus-like polymerase of Tilapia Lake Virus from the highly diverged Amnoonviridae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Ecco Staller & Loïc Carrique & Olivia C. Swann & Haitian Fan & Jeremy R. Keown & Carol M. Sheppard & Wendy S. Barclay & Jonathan M. Grimes & Ervin Fodor, 2024. "Structures of H5N1 influenza polymerase with ANP32B reveal mechanisms of genome replication and host adaptation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Tim Krischuns & Benoît Arragain & Catherine Isel & Sylvain Paisant & Matthias Budt & Thorsten Wolff & Stephen Cusack & Nadia Naffakh, 2024. "The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47470-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.