IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51769-w.html
   My bibliography  Save this article

An economic demand-based framework for prioritization strategies in response to transient amino acid limitations

Author

Listed:
  • Ritu Gupta

    (Institute for Stem Cell Science and Regenerative Medicine (inStem)
    NIH)

  • Swagata Adhikary

    (Institute for Stem Cell Science and Regenerative Medicine (inStem)
    Manipal Academy of Higher Education)

  • Nidhi Dalpatraj

    (Institute for Stem Cell Science and Regenerative Medicine (inStem))

  • Sunil Laxman

    (Institute for Stem Cell Science and Regenerative Medicine (inStem))

Abstract

Cells contain disparate amounts of distinct amino acids, each of which has different metabolic and chemical origins, but the supply cost vs demand requirements of each is unclear. Here, using yeast we quantify the restoration-responses after disrupting amino acid supply, and uncover a hierarchically prioritized restoration strategy for distinct amino acids. We comprehensively calculate individual amino acid biosynthetic supply costs, quantify total demand for an amino acid, and estimate cumulative supply/demand requirements for each amino acid. Through this, we discover that the restoration priority is driven by the gross demand for an amino acid, which is itself coupled to low supply costs for that amino acid. Demand from metabolic requirements dominate the demand-pulls for an amino acid, as exemplified by the largest restoration response upon disrupting arginine supply. Collectively, this demand-driven framework that drives the amino acid economy can identify novel amino acid responses, and help design metabolic engineering applications.

Suggested Citation

  • Ritu Gupta & Swagata Adhikary & Nidhi Dalpatraj & Sunil Laxman, 2024. "An economic demand-based framework for prioritization strategies in response to transient amino acid limitations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51769-w
    DOI: 10.1038/s41467-024-51769-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51769-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51769-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosemary Yu & Kate Campbell & Rui Pereira & Johan Björkeroth & Qi Qi & Egor Vorontsov & Carina Sihlbom & Jens Nielsen, 2020. "Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Ronnie J. Phillips & Daniel J. Slottje, 1983. "The Importance of Relative Prices in Analyzing Veblen Effects," Journal of Economic Issues, Taylor & Francis Journals, vol. 17(1), pages 197-206, March.
    3. Viridiana Olin-Sandoval & Jason Shu Lim Yu & Leonor Miller-Fleming & Mohammad Tauqeer Alam & Stephan Kamrad & Clara Correia-Melo & Robert Haas & Joanna Segal & David Alejandro Peña Navarro & Lucia Her, 2019. "Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism," Nature, Nature, vol. 572(7768), pages 249-253, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzhen Zhang & Yukmi Cai & Bing Zhang & Yi-Heng P. Job Zhang, 2024. "Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Tobias Thomas, 2013. "What price makes a good a status good? Results from a mating game," European Journal of Law and Economics, Springer, vol. 36(1), pages 35-55, August.
    4. Philipp Wendering & Marius Arend & Zahra Razaghi-Moghadam & Zoran Nikoloski, 2023. "Data integration across conditions improves turnover number estimates and metabolic predictions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Giovanni Scarinci & Jan-Luca Ariens & Georgia Angelidou & Sebastian Schmidt & Timo Glatter & Nicole Paczia & Victor Sourjik, 2024. "Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Manlu Zhu & Xiongfeng Dai, 2024. "Shaping of microbial phenotypes by trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Ning Qin & Lingyun Li & Xiaozhen Wan & Xu Ji & Yu Chen & Chaokun Li & Ping Liu & Yijie Zhang & Weijie Yang & Junfeng Jiang & Jianye Xia & Shuobo Shi & Tianwei Tan & Jens Nielsen & Yun Chen & Zihe Liu, 2024. "Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51769-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.