IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27857-6.html
   My bibliography  Save this article

Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities

Author

Listed:
  • Tianjiao Dai

    (Tsinghua University
    Peking University)

  • Donghui Wen

    (Peking University)

  • Colin T. Bates

    (University of Oklahoma)

  • Linwei Wu

    (University of Oklahoma)

  • Xue Guo

    (Tsinghua University)

  • Suo Liu

    (Tsinghua University)

  • Yifan Su

    (Tsinghua University)

  • Jiesi Lei

    (Tsinghua University)

  • Jizhong Zhou

    (University of Oklahoma
    University of Oklahoma
    Lawrence Berkeley National Laboratory)

  • Yunfeng Yang

    (Tsinghua University)

Abstract

Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (rrn) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level rrn copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on rrn copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a “hunger games” hypothesis to define microbial species abundance rules using the rrn copy number, ecological interaction, and nutrient availability.

Suggested Citation

  • Tianjiao Dai & Donghui Wen & Colin T. Bates & Linwei Wu & Xue Guo & Suo Liu & Yifan Su & Jiesi Lei & Jizhong Zhou & Yunfeng Yang, 2022. "Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27857-6
    DOI: 10.1038/s41467-021-27857-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27857-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27857-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Wang & Qing-Yi Yu & Niu-Niu Ji & Yong Zheng & John W. Taylor & Liang-Dong Guo & Cheng Gao, 2023. "Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Manlu Zhu & Xiongfeng Dai, 2024. "Shaping of microbial phenotypes by trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27857-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.