Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47999-7
Download full text from publisher
References listed on IDEAS
- Feng Yang & Xiao Wang & Daqi Zhang & Juan Yang & Da Luo & Ziwei Xu & Jiake Wei & Jian-Qiang Wang & Zhi Xu & Fei Peng & Xuemei Li & Ruoming Li & Yilun Li & Meihui Li & Xuedong Bai & Feng Ding & Yan Li, 2014. "Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts," Nature, Nature, vol. 510(7506), pages 522-524, June.
- Akira Takakura & Ko Beppu & Taishi Nishihara & Akihito Fukui & Takahiro Kozeki & Takahiro Namazu & Yuhei Miyauchi & Kenichiro Itami, 2019. "Strength of carbon nanotubes depends on their chemical structures," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
- Volker L. Deringer & Noam Bernstein & Gábor Csányi & Chiheb Mahmoud & Michele Ceriotti & Mark Wilson & David A. Drabold & Stephen R. Elliott, 2021. "Origins of structural and electronic transitions in disordered silicon," Nature, Nature, vol. 589(7840), pages 59-64, January.
- Jeroen W. G. Wilder & Liesbeth C. Venema & Andrew G. Rinzler & Richard E. Smalley & Cees Dekker, 1998. "Electronic structure of atomically resolved carbon nanotubes," Nature, Nature, vol. 391(6662), pages 59-62, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Hanwen Zhang & Veronika Juraskova & Fernanda Duarte, 2024. "Modelling chemical processes in explicit solvents with machine learning potentials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Liu, Lei & Jin, Jing & Hou, Fengxiao & Li, Shengjuan & Lee, Chang-Ha, 2017. "Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration," Energy, Elsevier, vol. 125(C), pages 459-469.
- Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Jonathan Vandermause & Yu Xie & Jin Soo Lim & Cameron J. Owen & Boris Kozinsky, 2022. "Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Di Zhang & Peiyun Yi & Xinmin Lai & Linfa Peng & Hao Li, 2024. "Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Linus C. Erhard & Jochen Rohrer & Karsten Albe & Volker L. Deringer, 2024. "Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Ang Gao & Richard C. Remsing, 2022. "Self-consistent determination of long-range electrostatics in neural network potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Wenzhu Liu & Jianhua Shi & Liping Zhang & Anjun Han & Shenglei Huang & Xiaodong Li & Jun Peng & Yuhao Yang & Yajun Gao & Jian Yu & Kai Jiang & Xinbo Yang & Zhenfei Li & Wenjie Zhao & Junlin Du & Xin S, 2022. "Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells," Nature Energy, Nature, vol. 7(5), pages 427-437, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47999-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.