IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6662d10.1038_34139.html
   My bibliography  Save this article

Electronic structure of atomically resolved carbon nanotubes

Author

Listed:
  • Jeroen W. G. Wilder

    (Delft University of Technology)

  • Liesbeth C. Venema

    (Delft University of Technology)

  • Andrew G. Rinzler

    (Center for Nanoscale Science and Technology, Rice Quantum Institute, MS-100, Rice University)

  • Richard E. Smalley

    (Center for Nanoscale Science and Technology, Rice Quantum Institute, MS-100, Rice University)

  • Cees Dekker

    (Delft University of Technology)

Abstract

Carbon nanotubes can be thought of as graphitic sheets with a hexagonal lattice that have been wrapped up into a seamless cylinder. Since their discovery in 19911, the peculiar electronic properties of these structures have attracted much attention. Their electronic conductivity, for example, has been predicted2,3,4 to depend sensitively on tube diameter and wrapping angle (a measure of the helicity of the tube lattice), with only slight differences in these parameters causing a shift from a metallic to a semiconducting state. In other words, similarly shaped molecules consisting of only one element (carbon) may have very different electronic behaviour. Although the electronic properties of multi-walled and single-walled nanotubes5,6,7,8,9,10,11,12 have been probed experimentally, it has not yet been possible to relate these observations to the corresponding structure. Here we present the results of scanning tunnelling microscopy and spectroscopy on individual single-walled nanotubes from which atomically resolved images allow us to examine electronic properties as afunction of tube diameter and wrapping angle. We observe bothmetallic and semiconducting carbon nanotubes and find thatthe electronic properties indeed depend sensitively on thewrapping angle. The bandgaps of both tube types are consistent with theoretical predictions. We also observe van Hove singularities at the onset of one-dimensional energy bands, confirming the strongly one-dimensional nature of conduction within nanotubes.

Suggested Citation

  • Jeroen W. G. Wilder & Liesbeth C. Venema & Andrew G. Rinzler & Richard E. Smalley & Cees Dekker, 1998. "Electronic structure of atomically resolved carbon nanotubes," Nature, Nature, vol. 391(6662), pages 59-62, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34139
    DOI: 10.1038/34139
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34139
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lei & Jin, Jing & Hou, Fengxiao & Li, Shengjuan & Lee, Chang-Ha, 2017. "Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration," Energy, Elsevier, vol. 125(C), pages 459-469.
    2. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Daniel Hedman & Ben McLean & Christophe Bichara & Shigeo Maruyama & J. Andreas Larsson & Feng Ding, 2024. "Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6662:d:10.1038_34139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.