IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29243-2.html
   My bibliography  Save this article

Self-consistent determination of long-range electrostatics in neural network potentials

Author

Listed:
  • Ang Gao

    (Beijing University of Posts and Telecommunications)

  • Richard C. Remsing

    (Rutgers University)

Abstract

Machine learning has the potential to revolutionize the field of molecular simulation through the development of efficient and accurate models of interatomic interactions. Neural networks can model interactions with the accuracy of quantum mechanics-based calculations, but with a fraction of the cost, enabling simulations of large systems over long timescales. However, implicit in the construction of neural network potentials is an assumption of locality, wherein atomic arrangements on the nanometer-scale are used to learn interatomic interactions. Because of this assumption, the resulting neural network models cannot describe long-range interactions that play critical roles in dielectric screening and chemical reactivity. Here, we address this issue by introducing the self-consistent field neural network — a general approach for learning the long-range response of molecular systems in neural network potentials that relies on a physically meaningful separation of the interatomic interactions — and demonstrate its utility by modeling liquid water with and without applied fields.

Suggested Citation

  • Ang Gao & Richard C. Remsing, 2022. "Self-consistent determination of long-range electrostatics in neural network potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29243-2
    DOI: 10.1038/s41467-022-29243-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29243-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29243-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haiyang Niu & Luigi Bonati & Pablo M. Piaggi & Michele Parrinello, 2020. "Ab initio phase diagram and nucleation of gallium," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Volker L. Deringer & Noam Bernstein & Gábor Csányi & Chiheb Mahmoud & Michele Ceriotti & Mark Wilson & David A. Drabold & Stephen R. Elliott, 2021. "Origins of structural and electronic transitions in disordered silicon," Nature, Nature, vol. 589(7840), pages 59-64, January.
    3. Tsz Wai Ko & Jonas A. Finkler & Stefan Goedecker & Jörg Behler, 2021. "A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Linus C. Erhard & Jochen Rohrer & Karsten Albe & Volker L. Deringer, 2024. "Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Peikun Zheng & Roman Zubatyuk & Wei Wu & Olexandr Isayev & Pavlo O. Dral, 2021. "Artificial intelligence-enhanced quantum chemical method with broad applicability," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Xingyuan San & Junwei Hu & Mingyi Chen & Haiyang Niu & Paul J. M. Smeets & Christos D. Malliakas & Jie Deng & Kunmo Koo & Roberto Reis & Vinayak P. Dravid & Xiaobing Hu, 2023. "Unlocking the mysterious polytypic features within vaterite CaCO3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jonathan Vandermause & Yu Xie & Jin Soo Lim & Cameron J. Owen & Boris Kozinsky, 2022. "Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Di Zhang & Peiyun Yi & Xinmin Lai & Linfa Peng & Hao Li, 2024. "Active machine learning model for the dynamic simulation and growth mechanisms of carbon on metal surface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Kit Joll & Philipp Schienbein & Kevin M. Rosso & Jochen Blumberger, 2024. "Machine learning the electric field response of condensed phase systems using perturbed neural network potentials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Jing Wu & E Zhou & An Huang & Hongbin Zhang & Ming Hu & Guangzhao Qin, 2024. "Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Stephan Thaler & Julija Zavadlav, 2021. "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Daniel Hedman & Ben McLean & Christophe Bichara & Shigeo Maruyama & J. Andreas Larsson & Feng Ding, 2024. "Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Oliver T. Unke & Stefan Chmiela & Michael Gastegger & Kristof T. Schütt & Huziel E. Sauceda & Klaus-Robert Müller, 2021. "SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    17. Wenzhu Liu & Jianhua Shi & Liping Zhang & Anjun Han & Shenglei Huang & Xiaodong Li & Jun Peng & Yuhao Yang & Yajun Gao & Jian Yu & Kai Jiang & Xinbo Yang & Zhenfei Li & Wenjie Zhao & Junlin Du & Xin S, 2022. "Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells," Nature Energy, Nature, vol. 7(5), pages 427-437, May.
    18. Hanwen Zhang & Veronika Juraskova & Fernanda Duarte, 2024. "Modelling chemical processes in explicit solvents with machine learning potentials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29243-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.