IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp459-469.html
   My bibliography  Save this article

Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration

Author

Listed:
  • Liu, Lei
  • Jin, Jing
  • Hou, Fengxiao
  • Li, Shengjuan
  • Lee, Chang-Ha

Abstract

To investigate the role of a curved char surface in the nitric oxide (NO)-char reaction, single-wall carbon nanotubes (SWCNTs) were proposed as a model for simulating the curved char surface in first-principles calculations. The effect of calcium and potassium decoration on the adsorption of NO was compared for SWCNTs and graphene, the latter of which represented a flat char surface. The contribution of a curved surface to the NO-char reaction was insignificant in the absence of metals, as the binding energy of NO on pure SWCNTs was only 13% of that on pure graphene. In contrast, when calcium or potassium was present, NO adsorption on the curved surface became significant as the binding energies of NO on calcium- or potassium-decorated SWCNTs increased to 72% and 18% of those on the corresponding decorated graphene surfaces, respectively. The catalytic effect of calcium and potassium was attributed to electron transfer and backdonation between the 4s- and 3d-orbitals of the metal atoms and the NO molecule. Thus, the studies into NO adsorption on flat and curved char surfaces render it possible to determine the degree of catalytic effect of these two metals on the char surface during fuel reburning.

Suggested Citation

  • Liu, Lei & Jin, Jing & Hou, Fengxiao & Li, Shengjuan & Lee, Chang-Ha, 2017. "Catalytic effects of calcium and potassium on a curved char surface in fuel reburning: A first-principles study on the adsorption of nitric oxide on single-wall carbon nanotubes with metal decoration," Energy, Elsevier, vol. 125(C), pages 459-469.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:459-469
    DOI: 10.1016/j.energy.2017.02.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hai & Liu, Jiaxun & Shen, Jun & Jiang, Xiumin, 2015. "Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion," Energy, Elsevier, vol. 82(C), pages 312-321.
    2. Jeroen W. G. Wilder & Liesbeth C. Venema & Andrew G. Rinzler & Richard E. Smalley & Cees Dekker, 1998. "Electronic structure of atomically resolved carbon nanotubes," Nature, Nature, vol. 391(6662), pages 59-62, January.
    3. Liu, Lei & Jin, Jing & Lin, Yuyu & Hou, Fengxiao & Li, Shengjuan, 2016. "The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study," Energy, Elsevier, vol. 106(C), pages 212-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).
    2. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Daniel Hedman & Ben McLean & Christophe Bichara & Shigeo Maruyama & J. Andreas Larsson & Feng Ding, 2024. "Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tan, Bo & Cheng, Gang & Fu, Shuhui & Wang, Haiyan & Li, Zixu & Zhang, Xuedong, 2022. "Molecular simulation for physisorption characteristics of O2 in low-rank coals," Energy, Elsevier, vol. 242(C).
    5. Liu, Lei & Jin, Jing & Lin, Yuyu & Hou, Fengxiao & Li, Shengjuan, 2016. "The effect of calcium on nitric oxide heterogeneous adsorption on carbon: A first-principles study," Energy, Elsevier, vol. 106(C), pages 212-220.
    6. Zou, Chan & Wang, Chunbo & Anthony, Edward, 2019. "The effect of CO on the transformation of arsenic species: A quantum chemistry study," Energy, Elsevier, vol. 187(C).
    7. Odeh, Andrew O., 2015. "Exploring the potential of petrographics in understanding coal pyrolysis," Energy, Elsevier, vol. 87(C), pages 555-565.
    8. Yang, Mengchi & Liu, Chao & Xu, Lianfei & Dong, Menghao & Wang, Zhuozhi & Shen, Boxiong & Kong, Wenwen & Wang, Xin & Yang, Jiancheng, 2023. "Catalytic mechanism of bi-alkali-metal-doped char in heterogeneous reduction of NO: A density functional theory study," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:459-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.