IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47970-6.html
   My bibliography  Save this article

Earthquake energy dissipation in a fracture mechanics framework

Author

Listed:
  • David S. Kammer

    (ETH Zurich)

  • Gregory C. McLaskey

    (Cornell University)

  • Rachel E. Abercrombie

    (Boston University)

  • Jean-Paul Ampuero

    (Géoazur)

  • Camilla Cattania

    (Massachusetts Institute of Technology)

  • Massimo Cocco

    (Istituto Nazionale di Geofisica e Vulcanologia)

  • Luca Dal Zilio

    (Nanyang Technological University
    Nanyang Technological University)

  • Georg Dresen

    (GFZ German Research Centre for Geosciences)

  • Alice-Agnes Gabriel

    (UCSD
    Ludwig-Maximilians-Universität München)

  • Chun-Yu Ke

    (The Pennsylvania State University)

  • Chris Marone

    (The Pennsylvania State University
    La Sapienza Universitá di Roma)

  • Paul Antony Selvadurai

    (ETH Zurich)

  • Elisa Tinti

    (Istituto Nazionale di Geofisica e Vulcanologia
    La Sapienza Universitá di Roma)

Abstract

Earthquakes are rupture-like processes that propagate along tectonic faults and cause seismic waves. The propagation speed and final area of the rupture, which determine an earthquake’s potential impact, are directly related to the nature and quantity of the energy dissipation involved in the rupture process. Here, we present the challenges associated with defining and measuring the energy dissipation in laboratory and natural earthquakes across many scales. We discuss the importance and implications of distinguishing between energy dissipation that occurs close to and far behind the rupture tip, and we identify open scientific questions related to a consistent modeling framework for earthquake physics that extends beyond classical Linear Elastic Fracture Mechanics.

Suggested Citation

  • David S. Kammer & Gregory C. McLaskey & Rachel E. Abercrombie & Jean-Paul Ampuero & Camilla Cattania & Massimo Cocco & Luca Dal Zilio & Georg Dresen & Alice-Agnes Gabriel & Chun-Yu Ke & Chris Marone &, 2024. "Earthquake energy dissipation in a fracture mechanics framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47970-6
    DOI: 10.1038/s41467-024-47970-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47970-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47970-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Rubino & A. J. Rosakis & N. Lapusta, 2017. "Understanding dynamic friction through spontaneously evolving laboratory earthquakes," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ilya Svetlizky & Jay Fineberg, 2014. "Classical shear cracks drive the onset of dry frictional motion," Nature, Nature, vol. 509(7499), pages 205-208, May.
    5. Judith S. Chester & Frederick M. Chester & Andreas K. Kronenberg, 2005. "Fracture surface energy of the Punchbowl fault, San Andreas system," Nature, Nature, vol. 437(7055), pages 133-136, September.
    6. G. Di Toro & R. Han & T. Hirose & N. De Paola & S. Nielsen & K. Mizoguchi & F. Ferri & M. Cocco & T. Shimamoto, 2011. "Fault lubrication during earthquakes," Nature, Nature, vol. 471(7339), pages 494-498, March.
    7. J. R. Leeman & D. M. Saffer & M. M. Scuderi & C. Marone, 2016. "Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Dong & Kaiwen Xia & Ying Xu & Derek Elsworth & Jean-Paul Ampuero, 2023. "Laboratory earthquakes decipher control and stability of rupture speeds," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lu Yao & Shengli Ma & Giulio Di Toro, 2023. "Coseismic fault sealing and fluid pressurization during earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Thomas H. W. Goebel & Valerian Schuster & Grzegorz Kwiatek & Kiran Pandey & Georg Dresen, 2024. "A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. J. Biemiller & A.-A. Gabriel & T. Ulrich, 2023. "Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Sara Beth L. Cebry & Chun-Yu Ke & Srisharan Shreedharan & Chris Marone & David S. Kammer & Gregory C. McLaskey, 2022. "Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Guoqiang Wang & Tianjian Yang & Mengmeng Zhao & Ting Li & Cai Zhang & Qinghua Chen & Xinyue Wen & Lirong Dang, 2023. "Natural Nitrogen-Bearing and Phosphorus-Bearing Nanoparticles in Surface Sediments of the Pearl River Estuary, China: Implications for Nitrogen and Phosphorus Cycling in Estuarine and Coastal Ecosyste," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    10. Xiao, Junyan & Chen, Zhangyao & Bi, Qinsheng & Zou, Yong & Guan, Shuguang, 2021. "Distinctive roles of hysteresis, amplitude death and oscillation death in generating fast-slow phenomena in parametrically and externally excited systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. David C. Bolton & Chris Marone & Demian Saffer & Daniel T. Trugman, 2023. "Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Carpinteri, Alberto & Paggi, Marco, 2009. "A fractal interpretation of size-scale effects on strength, friction and fracture energy of faults," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 540-546.
    13. Dawei Gao & Kelin Wang & Tania L. Insua & Matthew Sypus & Michael Riedel & Tianhaozhe Sun, 2018. "Defining megathrust tsunami source scenarios for northernmost Cascadia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 445-469, October.
    14. Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Faqi Diao & Huihui Weng & Jean-Paul Ampuero & Zhigang Shao & Rongjiang Wang & Feng Long & Xiong Xiong, 2024. "Physics-based assessment of earthquake potential on the Anninghe-Zemuhe fault system in southwestern China," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Wei Feng & Lu Yao & Chiara Cornelio & Rodrigo Gomila & Shengli Ma & Chaoqun Yang & Luigi Germinario & Claudio Mazzoli & Giulio Di Toro, 2023. "Physical state of water controls friction of gabbro-built faults," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47970-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.