Earthquake energy dissipation in a fracture mechanics framework
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47970-6
Download full text from publisher
References listed on IDEAS
- J. R. Leeman & D. M. Saffer & M. M. Scuderi & C. Marone, 2016. "Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
- V. Rubino & A. J. Rosakis & N. Lapusta, 2017. "Understanding dynamic friction through spontaneously evolving laboratory earthquakes," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
- Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Ilya Svetlizky & Jay Fineberg, 2014. "Classical shear cracks drive the onset of dry frictional motion," Nature, Nature, vol. 509(7499), pages 205-208, May.
- Judith S. Chester & Frederick M. Chester & Andreas K. Kronenberg, 2005. "Fracture surface energy of the Punchbowl fault, San Andreas system," Nature, Nature, vol. 437(7055), pages 133-136, September.
- G. Di Toro & R. Han & T. Hirose & N. De Paola & S. Nielsen & K. Mizoguchi & F. Ferri & M. Cocco & T. Shimamoto, 2011. "Fault lubrication during earthquakes," Nature, Nature, vol. 471(7339), pages 494-498, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng Dong & Kaiwen Xia & Ying Xu & Derek Elsworth & Jean-Paul Ampuero, 2023. "Laboratory earthquakes decipher control and stability of rupture speeds," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yohann Faure & Elsa Bayart, 2024. "Experimental evidence of seismic ruptures initiated by aseismic slip," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Lu Yao & Shengli Ma & Giulio Di Toro, 2023. "Coseismic fault sealing and fluid pressurization during earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Guoqiang Wang & Tianjian Yang & Mengmeng Zhao & Ting Li & Cai Zhang & Qinghua Chen & Xinyue Wen & Lirong Dang, 2023. "Natural Nitrogen-Bearing and Phosphorus-Bearing Nanoparticles in Surface Sediments of the Pearl River Estuary, China: Implications for Nitrogen and Phosphorus Cycling in Estuarine and Coastal Ecosyste," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
- Thomas H. W. Goebel & Valerian Schuster & Grzegorz Kwiatek & Kiran Pandey & Georg Dresen, 2024. "A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Xiao, Junyan & Chen, Zhangyao & Bi, Qinsheng & Zou, Yong & Guan, Shuguang, 2021. "Distinctive roles of hysteresis, amplitude death and oscillation death in generating fast-slow phenomena in parametrically and externally excited systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- David C. Bolton & Chris Marone & Demian Saffer & Daniel T. Trugman, 2023. "Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- J. Biemiller & A.-A. Gabriel & T. Ulrich, 2023. "Dueling dynamics of low-angle normal fault rupture with splay faulting and off-fault damage," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Carpinteri, Alberto & Paggi, Marco, 2009. "A fractal interpretation of size-scale effects on strength, friction and fracture energy of faults," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 540-546.
- Dawei Gao & Kelin Wang & Tania L. Insua & Matthew Sypus & Michael Riedel & Tianhaozhe Sun, 2018. "Defining megathrust tsunami source scenarios for northernmost Cascadia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 445-469, October.
- Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Philippe Danré & Louis Barros & Frédéric Cappa & Luigi Passarelli, 2024. "Parallel dynamics of slow slips and fluid-induced seismic swarms," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Faqi Diao & Huihui Weng & Jean-Paul Ampuero & Zhigang Shao & Rongjiang Wang & Feng Long & Xiong Xiong, 2024. "Physics-based assessment of earthquake potential on the Anninghe-Zemuhe fault system in southwestern China," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Sara Beth L. Cebry & Chun-Yu Ke & Srisharan Shreedharan & Chris Marone & David S. Kammer & Gregory C. McLaskey, 2022. "Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Wei Feng & Lu Yao & Chiara Cornelio & Rodrigo Gomila & Shengli Ma & Chaoqun Yang & Luigi Germinario & Claudio Mazzoli & Giulio Di Toro, 2023. "Physical state of water controls friction of gabbro-built faults," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47970-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.