Laboratory earthquakes decipher control and stability of rupture speeds
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-38137-w
Download full text from publisher
References listed on IDEAS
- V. Rubino & A. J. Rosakis & N. Lapusta, 2017. "Understanding dynamic friction through spontaneously evolving laboratory earthquakes," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
- Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Ilya Svetlizky & Jay Fineberg, 2014. "Classical shear cracks drive the onset of dry frictional motion," Nature, Nature, vol. 509(7499), pages 205-208, May.
- Shmuel M. Rubinstein & Gil Cohen & Jay Fineberg, 2004. "Detachment fronts and the onset of dynamic friction," Nature, Nature, vol. 430(7003), pages 1005-1009, August.
- J. R. Leeman & D. M. Saffer & M. M. Scuderi & C. Marone, 2016. "Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- David S. Kammer & Gregory C. McLaskey & Rachel E. Abercrombie & Jean-Paul Ampuero & Camilla Cattania & Massimo Cocco & Luca Dal Zilio & Georg Dresen & Alice-Agnes Gabriel & Chun-Yu Ke & Chris Marone &, 2024. "Earthquake energy dissipation in a fracture mechanics framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Sara Beth L. Cebry & Chun-Yu Ke & Srisharan Shreedharan & Chris Marone & David S. Kammer & Gregory C. McLaskey, 2022. "Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Thomas H. W. Goebel & Valerian Schuster & Grzegorz Kwiatek & Kiran Pandey & Georg Dresen, 2024. "A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Plans, I. & Carpio, A. & Bonilla, L.L., 2009. "Toy nanoindentation model and incipient plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1623-1630.
- Xiao, Junyan & Chen, Zhangyao & Bi, Qinsheng & Zou, Yong & Guan, Shuguang, 2021. "Distinctive roles of hysteresis, amplitude death and oscillation death in generating fast-slow phenomena in parametrically and externally excited systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- David C. Bolton & Chris Marone & Demian Saffer & Daniel T. Trugman, 2023. "Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38137-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.