IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11104.html
   My bibliography  Save this article

Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes

Author

Listed:
  • J. R. Leeman

    (The Pennsylvania State University)

  • D. M. Saffer

    (The Pennsylvania State University)

  • M. M. Scuderi

    (The Pennsylvania State University
    Sapienza Università di Roma)

  • C. Marone

    (The Pennsylvania State University)

Abstract

Slow earthquakes represent an important conundrum in earthquake physics. While regular earthquakes are catastrophic events with rupture velocities governed by elastic wave speed, the processes that underlie slow fault slip phenomena, including recent discoveries of tremor, slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse laboratory observations have provided insights, but the physics of slow fault rupture remain enigmatic. Here we report on laboratory observations that illuminate the mechanics of slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the threshold between stable and unstable failure, and is governed by frictional dynamics via the interplay of fault frictional properties, effective normal stress and the elastic stiffness of the surrounding material. This generalizable frictional mechanism may act in concert with other hypothesized processes that damp dynamic ruptures, and is consistent with the broad range of geologic environments where slow earthquakes are observed.

Suggested Citation

  • J. R. Leeman & D. M. Saffer & M. M. Scuderi & C. Marone, 2016. "Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11104
    DOI: 10.1038/ncomms11104
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11104
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas H. W. Goebel & Valerian Schuster & Grzegorz Kwiatek & Kiran Pandey & Georg Dresen, 2024. "A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yohann Faure & Elsa Bayart, 2024. "Experimental evidence of seismic ruptures initiated by aseismic slip," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xiao, Junyan & Chen, Zhangyao & Bi, Qinsheng & Zou, Yong & Guan, Shuguang, 2021. "Distinctive roles of hysteresis, amplitude death and oscillation death in generating fast-slow phenomena in parametrically and externally excited systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Peng Dong & Kaiwen Xia & Ying Xu & Derek Elsworth & Jean-Paul Ampuero, 2023. "Laboratory earthquakes decipher control and stability of rupture speeds," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. David C. Bolton & Chris Marone & Demian Saffer & Daniel T. Trugman, 2023. "Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. David S. Kammer & Gregory C. McLaskey & Rachel E. Abercrombie & Jean-Paul Ampuero & Camilla Cattania & Massimo Cocco & Luca Dal Zilio & Georg Dresen & Alice-Agnes Gabriel & Chun-Yu Ke & Chris Marone &, 2024. "Earthquake energy dissipation in a fracture mechanics framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Sara Beth L. Cebry & Chun-Yu Ke & Srisharan Shreedharan & Chris Marone & David S. Kammer & Gregory C. McLaskey, 2022. "Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.