IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v609y2022i7929d10.1038_s41586-022-05223-w.html
   My bibliography  Save this article

Living material assembly of bacteriogenic protocells

Author

Listed:
  • Can Xu

    (University of Bristol)

  • Nicolas Martin

    (Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031)

  • Mei Li

    (University of Bristol
    Shanghai Jiao Tong University)

  • Stephen Mann

    (University of Bristol
    Shanghai Jiao Tong University
    University of Bristol
    Shanghai Jiao Tong University)

Abstract

Advancing the spontaneous bottom-up construction of artificial cells with high organizational complexity and diverse functionality remains an unresolved issue at the interface between living and non-living matter1–4. Here, to address this challenge, we developed a living material assembly process based on the capture and on-site processing of spatially segregated bacterial colonies within individual coacervate microdroplets for the endogenous construction of membrane-bounded, molecularly crowded, and compositionally, structurally and morphologically complex synthetic cells. The bacteriogenic protocells inherit diverse biological components, exhibit multifunctional cytomimetic properties and can be endogenously remodelled to include a spatially partitioned DNA–histone nucleus-like condensate, membranized water vacuoles and a three-dimensional network of F-actin proto-cytoskeletal filaments. The ensemble is biochemically energized by ATP production derived from implanted live Escherichia coli cells to produce a cellular bionic system with amoeba-like external morphology and integrated life-like properties. Our results demonstrate a bacteriogenic strategy for the bottom-up construction of functional protoliving microdevices and provide opportunities for the fabrication of new synthetic cell modules and augmented living/synthetic cell constructs with potential applications in engineered synthetic biology and biotechnology.

Suggested Citation

  • Can Xu & Nicolas Martin & Mei Li & Stephen Mann, 2022. "Living material assembly of bacteriogenic protocells," Nature, Nature, vol. 609(7929), pages 1029-1037, September.
  • Handle: RePEc:nat:nature:v:609:y:2022:i:7929:d:10.1038_s41586-022-05223-w
    DOI: 10.1038/s41586-022-05223-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05223-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05223-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Hao Wang & Hui Zhuang & Wenjing Tang & Jun Zhu & Wei Zhu & Lingxiang Jiang, 2024. "Coacervate-pore complexes for selective molecular transport and dynamic reconfiguration," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Huanqing Cui & Yage Zhang & Sihan Liu & Yang Cao & Qingming Ma & Yuan Liu & Haisong Lin & Chang Li & Yang Xiao & Sammer Ul Hassan & Ho Cheung Shum, 2024. "Thermo-responsive aqueous two-phase system for two-level compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Joshua Ricouvier & Pavel Mostov & Omer Shabtai & Ohad Vonshak & Alexandra Tayar & Eyal Karzbrun & Aset Khakimzhan & Vincent Noireaux & Shirley Shulman Daube & Roy Bar-Ziv, 2024. "Large-scale-integration and collective oscillations of 2D artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Shubin Li & Yingming Zhao & Shuqi Wu & Xiangxiang Zhang & Boyu Yang & Liangfei Tian & Xiaojun Han, 2023. "Regulation of species metabolism in synthetic community systems by environmental pH oscillations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Shang Dai & Zhenming Xie & Binqiang Wang & Rui Ye & Xinwen Ou & Chen Wang & Ning Yu & Cheng Huang & Jie Zhao & Chunhui Cai & Furong Zhang & Damiano Buratto & Taimoor Khan & Yan Qiao & Yuejin Hua & Ruh, 2023. "An inorganic mineral-based protocell with prebiotic radiation fitness," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:609:y:2022:i:7929:d:10.1038_s41586-022-05223-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.